PowerShell Essencial para Profissionais de TI

Autor: Paulo César Marino

1. INTRODUGAO AO POWERSHELL

1.1 Histéria, Evolugao e Posicionamento no Ecossistema Microsoft
1.1.1 Contexto Historico e Necessidade de Criacao

O PowerShell nasceu de uma necessidade critica da Microsoft em oferecer uma
ferramenta robusta de automacéo e administragao para seus sistemas
operacionais. Antes de sua criagao, os administradores de sistemas Windows
dependiam principalmente de:

e Prompt de Comando (CMD): Interface de linha de comando limitada,
herdada do MS-DOS

e Scripts VBScript e JScript: Solucdes fragmentadas e sem consisténcia

o Ferramentas GUI: Interfaces graficas que nao permitiam automacéo
eficiente

e Windows Management Instrumentation (WMI): Poderoso, mas complexo
e dificil de usar

Enquanto sistemas Unix/Linux possuiam shells poderosos como Bash, Ksh e Zsh
ha décadas, o Windows carecia de uma solucao unificada e moderna para
administragdo via linha de comando.

1.1.2 Linha do Tempo do PowerShell
2002-2003: Projeto Monad

e Iniciativa liderada por Jeffrey Snover, arquiteto da Microsoft

e Obijetivo: criar um shell orientado a objetos para Windows

e Nome de codigo: "Monad"

e Conceitorevolucionario: trabalhar com objetos .NET ao invés de texto puro
Novembro de 2006: PowerShell 1.0

e Langamento oficial como componente opcional do Windows

e Baseado no .NET Framework 2.0

e Aproximadamente 130 cmdlets nativos

e Limitagdes: sem suporte para remoting nativo, mdédulos limitados

Outubro de 2009: PowerShell 2.0

Integrado ao Windows 7 e Windows Server 2008 R2
Recursos revolucionarios:
o PowerShell Remoting: Administragao remota via WS-Management
o Background Jobs: Execucdo assincrona de comandos
o Advanced Functions: Fungdes com capacidades de cmdlets
o PowerShell ISE: Ambiente de script integrado

o Modulos: Sistema de empacotamento e distribuicédo de codigo

Agosto de 2012: PowerShell 3.0

Langado com Windows 8 e Windows Server 2012
Melhorias significativas:
o Workflow: Integragcao com Windows Workflow Foundation
o CIM Cmdlets: Sucessores dos cmdlets WMI
o Sessoes desconectadas: Resiliéncia em conexdes remotas
o Descoberta automatica de médulos

o Intellisense aprimorado

Outubro de 2013: PowerShell 4.0

Incluido no Windows 8.1 e Windows Server 2012 R2
Recursos principais:

o Desired State Configuration (DSC): Gerenciamento declarativo de
configuracoes

o Melhorias no debugging: Depuragao de scripts e workflows

o Cmdlets para gerenciamento de rede aprimorados

Fevereiro de 2016: PowerShell 5.0

Ultima versdo do "Windows PowerShell"
Recursos marcantes:
o PowerShellGet: Gerenciador de pacotes para mdédulos

o Classes: Suporte nativo para programacao orientada a objetos

o Enumeracoées e validagdes avancadas

o OneGet/PackageManagement: Framework unificado de
gerenciamento de pacotes

o Melhorias significativas no DSC
Janeiro de 2018: PowerShell Core 6.0
e Mudanca de paradigma: Migracao para .NET Core
e Multiplataforma: Suporte oficial para Linux e macOS
e Open Source: Cddigo aberto no GitHub
e Renomeacao: "Windows PowerShell" (5.1) vs "PowerShell Core" (6.x+)

e Objetivo: unificar a experiéncia de automacao em todos os sistemas
operacionais

Setembro de 2018: PowerShell Core 6.1

e Melhorias de performance e compatibilidade

e Suporte aprimorado para moédulos do Windows PowerShell
Janeiro de 2019: PowerShell Core 6.2

« Ultima verséo da série 6.x

e Focoem estabilidade e compatibilidade
Marco de 2020: PowerShell 7.0

e Remocao dotermo "Core" do nome

o Baseadoem .NET Core 3.1

e ForEach-Object -Parallel: Processamento paralelo nativo

e Operadores ternarios: Sintaxe condicional simplificada

e Pipeline chain operators (&&, ||)

e Null coalescing operators (??, ?7=)

e Compatibilidade aprimorada com Windows PowerShell 5.1
Novembro de 2020: PowerShell 7.1 (LTS)

e Primeiraversao Long-Term Support (LTS) do PowerShell 7

o Baseadoem .NET5.0

e Suporte estendido por 3 anos

Novembro de 2021: PowerShell 7.2 (LTS)

e Baseadoem .NET6.0

e Melhorias de performance significativas

e Previsdo de suporte até 2024
Novembro de 2022: PowerShell 7.3

o Baseadoem .NET 7.0

e Melhorias na experiéncia do usuario e performance

e Recursos experimentais aprimorados
Novembro de 2023: PowerShell 7.4 (LTS)

o Baseadoem .NET 8.0

e Melhorias na seguranca e conformidade

e Integracao aprimorada com Azure e servigos em nuvem
2024-2025: PowerShell 7.5 (Preview/Atual)

e Evolucao continua com feedback da comunidade

e Focoem performance, segurancga e integragao com DevOps
1.1.3 Posicionamento no Ecossistema Microsoft

O PowerShell ocupa uma posigcao estratégica e central no ecossistema Microsoft
moderno:

1. Administracao de Sistemas Operacionais

« Windows Server: Unica interface consistente para gerenciar todos os
recursos

e Windows 10/11: Ferramentas avangcadas de administracao local

e Server Core e Nano Server: Instalagcées sem GUIl dependem
exclusivamente do PowerShell

2. Integracao com Produtos Microsoft
e Active Directory: Médulo ActiveDirectory com centenas de cmdlets

e Exchange Server: Toda a administragdo do Exchange é baseada em
PowerShell

e SharePoint: Automacao e gerenciamento de farms SharePoint

e SQL Server: Modulo SQLPS/SqlServer para administragcao de bancos de
dados

o System Center: Configuration Manager, Operations Manager, Orchestrator
e Hyper-V: Gerenciamento completo de virtualizagado
e Azure: Médulos Az para gerenciar recursos na nuvem

e Microsoft 365: Médulos para Exchange Online, SharePoint Online, Teams,
etc.

3. DevOps e Automacgao
e Azure DevOps: Tarefas nativas de PowerShell em pipelines
e GitHub Actions: Suporte para execucao de scripts PowerShell
e Infrastructure as Code (l1aC): Scripts de provisionamento e configuragcao

o Desired State Configuration (DSC): Gerenciamento declarativo de
infraestrutura

4. Segurancga e Conformidade
e Microsoft Defender: Cmdlets para gerenciamento de seguranca
e Antimalware Scan Interface (AMSI): Integracao nativa

e JEA (Just Enough Administration): Delegacao segura de privilégios
administrativos

e Logging e auditoria: Transcripts, module logging, script block logging
5. Desenvolvimento e Testes

e Pester: Framework oficial de testes para PowerShell

e PSScriptAnalyzer: Analise estatica de cédigo

e Platyps: Geracao de documentacao
1.1.4 Windows PowerShell vs PowerShell 7+

E fundamental compreender as diferencas entre as duas versées:
Aspecto Windows PowerShell 5.1 PowerShell 7+
Base tecnolégica .NET Framework 4.x .NET Core / .NET 6+

Plataformas Apenas Windows Windows, Linux, macOS

Aspecto Windows PowerShell 5.1 PowerShell 7+

Manutencao (sem novos

Ciclo de vida Desenvolvimento ativo

recursos)

Instalagcao no

. Nativo (ndo removivel) Instalagao lado a lado
Windows
Compatibilidade 100% com modulos legados ~90% compatibilidade
Excelente (especialmente
Performance Boa
1/0)
3 . Alguns modulos Windows
Moddulos exclusivos Novos recursos modernos

legados

Quando usar Windows PowerShell 5.1:

Scripts legados que dependem de médulos incompativeis
Ambiente exclusivamente Windows sem necessidade de novos recursos

Dependéncias de .NET Framework especificas

Quando usar PowerShell 7+:

Novos projetos e scripts

Ambientes multiplataforma
Necessidade de performance superior
Uso de recursos modernos da linguagem

Ambientes em nuvem e containers

1.1.5 Principios de Design e Filosofia

O PowerShell foi projetado seguindo principios fundamentais:

1. Orientacao a Objetos

Diferente de shells Unix que trabalham com texto, PowerShell manipula
objetos .NET

Acesso direto a propriedades e métodos

Eliminacao de parsing de texto

2. Consisténcia

e Convencéao de nomenclatura Verbo-Substantivo (Get-Process, Set-
Location)

e Parametros padronizados em todos os cmdlets
e Comportamento previsivel
3. Descoberta
e Sistema de ajuda integrado (Get-Help)
e Autocompletarinteligente (Tab completion)
e Get-Command para descobrir cmdlets
4. Composicao
e Pipeline poderoso para encadear comandos
e Cmdlets especializados que fazem uma coisa bem feita
e Filosofia Unix aplicada a objetos
5. Expansibilidade
e Facil criagcao de fungdes e médulos
e Integracdo com .NET
e Suporte a providers para acessar datastores como filesystem
1.2 Instalagao e Configuracao do Ambiente
1.2.1 Verificando Versoes Instaladas

Antes de instalar ou atualizar o PowerShell, é importante verificar as versoes ja
presentes no sistema.

Verificar versao do Windows PowerShell:

$PSVersionTable

Este comando retorna um objeto hashtable com informacdes detalhadas:
Name Value

PSVersion 5.1.19041.4522

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

BuildVersion 10.0.19041.4522
CLRVersion 4.0.30319.42000
WSManStackVersion 3.0
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
Principais propriedades:
o PSVersion: Versdo do PowerShell instalada
e PSEdition: "Desktop" (Windows PowerShell) ou "Core" (PowerShell 7+)
e CLRVersion: Versao do Common Language Runtime (.NET)
e PSCompatibleVersions: Versdoes com as quais é compativel
Verificar se PowerShell 7+ esta instalado:
Verificar via executavel

pwsh -v

Ou dentro de uma sessdo PowerShell 7
$PSVersionTable.PSVersion
1.2.2 Instalando PowerShell 7+ no Windows
Existem varias formas de instalar o PowerShell 7+ no Windows:
Método 1: Via MSI (Instalador tradicional)
1. Acesse o repositério oficial: https://github.com/PowerShell/PowerShell
2. Navegue até a secao "Releases"
3. Baixe o instalador MSI apropriado:
o PowerShell-7.x.x-win-x64.msi (64 bits)
o PowerShell-7.x.x-win-x86.msi (32 bits)
4. Execute o instalador e siga o assistente
Opcoes de instalacgao:
o Adicionar ao PATH do sistema

e Registrar contexto de menu do Windows Explorer

e Habilitar PowerShell Remoting (requer confirmacéo)
Método 2: Via Windows Package Manager (winget)
Instalar versgo estavel mais recente

winget install Microsoft.PowerShell

Instalar versao Preview

winget install Microsoft.PowerShell.Preview

Atualizar PowerShell existente
winget upgrade Microsoft.PowerShell
Método 3: Via Microsoft Store

1. Abra a Microsoft Store

2. Pesquise por "PowerShell"

3. Cligue em "Obter" ou "Instalar"

4. Atualizacdes automaticas sao gerenciadas pela Store
Método 4: Via Chocolatey
Instalar Chocolatey primeiro (se nao tiver)
Set-ExecutionPolicy Bypass -Scope Process -Force

[System.Net.ServicePointManager]::SecurityProtocol =
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072

iex ((New-Object
System.Net.WebClient).DownloadString(‘https://chocolatey.org/install.ps1'))

Instalar PowerShell

choco install powershell-core

Método 5: Via Script de Instalacao Automatizada
Executar como Administrador

iex "&{ $(irm https://aka.ms/install-powershell.ps1) } -UseMSI"

Ou com opcgoées especificas
iex "&{ $(irm https://aka.ms/install-powershell.ps1) } -UseMSI -Preview -Quiet"
1.2.3 Instalando PowerShell 7+ no Linux

Ubuntu/Debian:

Atualizar indice de pacotes

sudo apt-get update

Instalar dependéncias

sudo apt-get install -y wget apt-transport-https software-properties-common

Baixar a chave GPG da Microsoft

wget -q "https://packages.microsoft.com/config/ubuntu/$(lsb_release -
rs)/packages-microsoft-prod.deb"

Registrar o repositdrio da Microsoft

sudo dpkg -i packages-microsoft-prod.deb

Atualizar lista de pacotes

sudo apt-get update

Instalar PowerShell

sudo apt-get install -y powershell

Iniciar PowerShell
pwsh

Red Hat Enterprise Linux / CentOS:

Registrar repositdrio da Microsoft

curl https://packages.microsoft.com/config/rhel/8/prod.repo | sudo tee
/etc/yum.repos.d/microsoft.repo

Instalar PowerShell

sudo yum install -y powershell

Iniciar PowerShell
pwsh

Fedora:

Importar chave GPG

sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc

Registrar repositdrio

curl https://packages.microsoft.com/config/rhel/8/prod.repo | sudo tee
/etc/yum.repos.d/microsoft.repo

Instalar PowerShell

sudo dnfinstall -y powershell

Iniciar PowerShell
pwsh
1.2.4 Instalando PowerShell 7+ no macOS

Via Homebrew (recomendado):

Instalar Homebrew (se nao tiver)

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Instalar PowerShell

brew install --cask powershell

Iniciar PowerShell

pwsh

Via Download Direto:
1. Baixe o pacote PKG de: https://github.com/PowerShell/PowerShell/releases
2. Execute oinstalador powershell-7.x.x-0sx-x64.pkg
3. Siga o assistente de instalacao

1.2.5 Configuracao de Execution Policy

O Execution Policy € um mecanismo de seguranca que controla a execucgao de
scripts no PowerShell.

Niveis de Execution Policy:
1. Restricted (Padrdo no Windows cliente)
o Nao permite execugdo de nenhum script
o Apenas comandos interativos
2. AUSigned
o Apenas scripts assinados por um publisher confiavel
o Requer certificado digital
3. RemoteSigned (Recomendado para desenvolvimento)
o Scripts locais executam sem assinatura
o Scripts baixados da internet requerem assinatura
4. Unrestricted
o Executatodos os scripts
o Avisa sobre scripts da internet

5. Bypass

o Nenhuma verificagio ou aviso
o Usado em scripts de automacéo
6. Undefined
o Remove a policy do escopo atual
o Herda do escopo superior
Escopos de Execution Policy:
MachinePolicy: Definido por Group Policy (dominio)
UserPolicy: Definido por Group Policy (usuario)
Process: Apenas para a sessgo atual
CurrentUser: Para o usuario atual
LocalMachine: Para todos os usuarios da maquina
Comandos para gerenciar Execution Policy:
Verificar policy atual

Get-ExecutionPolicy

Verificar todas as policies por escopo

Get-ExecutionPolicy -List

Definir policy para usuario atual (recomendado)

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

Definir policy para maquina (requer admin)

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope LocalMachine

Definir apenas para sesséo atual (ndo persiste)

Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process

Forcar mudanca sem confirmacao

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Force
Exemplo pratico:
Situacdo: vocé baixou um script da internet

O arquivo esta bloqueado (Zone.ldentifier)

Verificar se arquivo esta bloqueado

Get-ltem .\MeuScript.ps1 -Stream Zone.ldentifier

Desbloquear arquivo especifico

Unblock-File -Path .\MeuScript.ps1

Desbloquear todos os scripts de uma pasta
Get-Childltem -Path C:\Scripts -Recurse | Unblock-File
1.2.6 Configurando o Profile do PowerShell

O profile é um script executado automaticamente ao iniciar o PowerShell,
permitindo personalizacao do ambiente.

Tipos de Profile:
Existem 4 profiles, carregados nesta ordem:
1. AlWUsersAllHosts: Para todos os usuarios, todas as aplicacdes
o Caminho: $PSHOME\Profile.ps1
2. AllUsersCurrentHost: Para todos os usuarios, aplicagao atual
o Caminho: $PSHOME\Microsoft.PowerShell_profile.ps1
3. CurrentUserAllHosts: Usuario atual, todas as aplicacdes
o Caminho: $Home\Documents\PowerShell\Profile.ps1
4. CurrentUserCurrentHost: Usuario atual, aplicagao atual (mais comum)

o Caminho: $Home\Documents\PowerShell\Microsoft.PowerShell_pr
ofile.ps1

Verificando caminhos dos profiles:

Ver todos os profiles disponiveis

$PROFILE | Get-Member -Type NoteProperty | Select-Object Name,
@{Name='Path'; Expression={$PROFILE.$($_.Name)}}

Ver caminho do profile atual

$PROFILE

Verificar se profile existe

Test-Path $PROFILE

Criando um profile:

Criar diretorio se ndo existir

if ({(Test-Path (Split-Path $PROFILE))) {

New-Item -Path (Split-Path $PROFILE) -ItemType Directory -Force

Criar arquivo de profile

New-Item -Path $PROFILE -ltemType File -Force

Abrir no editor padrdo

notepad $PROFILE

Ou no VS Code

code $PROFILE

Exemplo de Profile Basico:
Profile para PowerShell 7

Localizacdo: $Home\Documents\PowerShell\Microsoft.PowerShell_profile.ps1

Mensagem de boas-vindas

Write-Host "Bem-vindo, $env:USERNAME!" -ForegroundColor Green

Write-Host "PowerShell $($PSVersionTable.PSVersion)" -ForegroundColor Cyan

Aliases personalizados
Set-Alias -Name np -Value notepad.exe

Set-Alias -Name Il -Value Get-Childltem

Funcées personalizadas

function prompt {
$location = Get-Location
Write-Host "PS " -NoNewline -ForegroundColor Yellow
Write-Host "$location" -NoNewline -ForegroundColor Cyan
Write-Host ">" -NoNewline -ForegroundColor Yellow

return

function Get-MylP {

(Invoke-WebRequest -Uri 'https://api.ipify.org').Content

Importar mdédulos frequentemente usados

Import-Module -Name PSReadLine

Configuracbes do PSReadLline
Set-PSReadLineOption -PredictionSource History
Set-PSReadLineOption -PredictionViewStyle ListView
Set-PSReadLineOption -EditMode Windows

Set-PSReadlLineKeyHandler -Key Tab -Function MenuComplete

Variaveis de ambiente personalizadas

$env:SCRIPTS_PATH = "C:\Scripts"

Navegacéao rapida
function GoScripts { Set-Location $env:SCRIPTS_PATH }

Set-Alias -Name scripts -Value GoScripts

Historico aumentado

$MaximumHistoryCount = 10000

1.2.7 Instalando e Configurando Ferramentas Complementares

Visual Studio Code com PowerShell Extension

Visual Studio Code é o editor recomendado para desenvolvimento em PowerShell.
Instalar VS Code via winget

winget install Microsoft.VisualStudioCode

Instalar extensdo PowerShell
code --install-extension ms-vscode.powershell

Configuragoes recomendadas para VS Code (settings.json):

"powershell.codeFormatting.preset": "OTBS",
"powershell.codeFormatting.autoCorrectAliases": true,
"powershell.codeFormatting.useCorrectCasing": true,
"powershell.integratedConsole.focusConsoleOnExecute": false,
"powershell.scriptAnalysis.enable": true,
"editor.formatOnSave": true,

"files.trimTrailingWhitespace": true

Windows Terminal
Windows Terminal oferece uma experiéncia moderna de linha de comando:
Instalar via winget

winget install Microsoft.WindowsTerminal

Ou via Microsoft Store
Pesquisar: "Windows Terminal"

Configuracao de perfil padrao (settings.json):

"defaultProfile": "{574e775e-4f2a-5b96-ac1e-a2962a402336}",
"profiles": {
"defaults": {
"fontFace": "Cascadia Code",
"fontSize": 11,
"colorScheme": "Campbell Powershell"
b
"list": [
{
"guid": "{574e775e-4f2a-5b96-ac1e-a2962a402336}",
"name": "PowerShell 7",
"source": "Windows.Terminal.PowershellCore",

"icon": "ms-appx:///Profilelcons/{574e775e-4f2a-5b96-ac1e-
a2962a402336}.png",

"startingDirectory": "% USERPROFILE%"

}

Oh My Posh (Temas e personalizacao do prompt)
Instalar Oh My Posh

winget install JanDeDobbeleer.OhMyPosh

Instalar fontes Nerd Fonts

oh-my-posh font install

Adicionar ao profile

oh-my-posh init pwsh | Invoke-Expression

Ou com tema especifico

oh-my-posh init pwsh --config "$env:POSH_THEMES_PATH/paradox.omp.json" |
Invoke-Expression

PSReadLine (Melhorias na linha de comando)
PSReadLine ja vem instalado no PowerShell 7, mas pode ser atualizado:
Atualizar PSReadLine

Install-Module -Name PSReadLine -Force -AllowClobber

Configuragcbes recomendadas (adicionar ao profile)

Set-PSReadLineOption -PredictionSource History

Set-PSReadLineOption -PredictionViewStyle ListView

Set-PSReadLineOption -HistorySearchCursorMovesToEnd
Set-PSReadLineKeyHandler -Key UpArrow -Function HistorySearchBackward
Set-PSReadLineKeyHandler -Key DownArrow -Function HistorySearchForward
1.2.8 Configurando PowerShell Remoting

PowerShell Remoting permite executar comandos em computadores remotos.

Habilitar Remoting (no computador de destino):

Executar como Administrador

Enable-PSRemoting -Force

Verificar configuragéo

Get-PSSessionConfiguration

Testar conectividade local

Test-WSMan

Configuracoes de firewall (automaticas com Enable-PSRemoting):
e Porta 5985 (HTTP - WinRM)
e Porta 5986 (HTTPS - WinRM-HTTPS)

Configurar clientes confiaveis (se nao estiver em dominio):

No computador cliente, executar como Administrador

Set-Iltem WSMan:\localhost\Client\TrustedHosts -Value "192.168.1.100,Server01"
-Force

Ou permitir todos (ndo recomendado em produgéo)

Set-Iltem WSMan:\localhost\Client\TrustedHosts -Value "*" -Force

Verificar configuragéo

Get-ltem WSMan:\localhost\Client\TrustedHosts
Testar conexdo remota:

Teste basico

Test-NetConnection -ComputerName Server01 -Port 5985

Teste de sessgo remota
Enter-PSSession -ComputerName Server01 -Credential (Get-Credential)

1.2.9 Médulos Essenciais para Instalar

PowerShellGet (gerenciador de médulos):
Verificar verséo

Get-Module -Name PowerShellGet -ListAvailable

Atualizar para versdo mais recente

Install-Module -Name PowerShellGet -Force -AllowClobber

Registrar PSGallery como repositorio confiavel
Set-PSRepository -Name PSGallery -InstallationPolicy Trusted
Mdédulos recomendados:

Pester - Framework de testes

Install-Module -Name Pester -Force

PSScriptAnalyzer - Anélise estatica de cdodigo

Install-Module -Name PSScriptAnalyzer -Force

ImportExcel - Manipulacéo de arquivos Excel sem Microsoft Office

Install-Module -Name ImportExcel -Force

Az - Gerenciamento do Azure

Install-Module -Name Az -AllowClobber -Force

Microsoft.Graph - Gerenciamento do Microsoft 365

Install-Module -Name Microsoft.Graph -Force

SqlServer - Administracdo do SQL Server
Install-Module -Name SqlServer -Force

Verificar modulos instalados:

Listar todos os mddulos disponiveis

Get-Module -ListAvailable

Buscar modulos na galeria

Find-Module -Name *Azure*

Ver informacées de um modulo

Get-Module -Name Az -ListAvailable | Select-Object Name, Version, Description
1.2.10 Verificacao Final da Instalacao

Execute este script completo para validar sua instalacao:

Script de Verificagcdo do Ambiente PowerShell

Write-Host " n=== VERIFICACAO DO AMBIENTE POWERSHELL ==="-
ForegroundColor Cyan

Versdo do PowerShell
Write-Host "™ n[1] Versao do PowerShell:" -ForegroundColor Yellow

$PSVersionTable | Format-Table -AutoSize

Execution Policy
Write-Host "™ n[2] Execution Policy:" -ForegroundColor Yellow

Get-ExecutionPolicy -List | Format-Table -AutoSize

Profile
Write-Host "™ n[3] Profile do PowerShell:" -ForegroundColor Yellow
Write-Host "Caminho: $PROFILE"

Write-Host "Existe: $(Test-Path $PROFILE)"

Mddulos Importantes

Write-Host "" n[4] Médulos Essenciais:" -ForegroundColor Yellow
$modulos = @('PowerShellGet', 'PSReadLine’, 'Pester’, 'PSScriptAnalyzer')
foreach ($mod in $modulos) {

$versao = (Get-Module -Name $mod -ListAvailable | Select-Object -First
1).Version

if ($versao) {
Write-Host "$mod : $versao" -ForegroundColor Green
}else{

Write-Host "$mod : NAO INSTALADO" -ForegroundColor Red

PowerShell Remoting
Write-Host "™ n[5] PowerShell Remoting:" -ForegroundColor Yellow
try {
Test-WSMan -ErrorAction Stop | Out-Null
Write-Host "Status: HABILITADO" -ForegroundColor Green
} catch{

Write-Host "Status: DESABILITADO" -ForegroundColor Red

Repositdorios
Write-Host "™ n[6] Repositdrios Configurados:" -ForegroundColor Yellow

Get-PSRepository | Format-Table -AutoSize

Write-Host " n=== VERIFICACAO CONCLUIDA ===" -ForegroundColor Cyan
Conclusao da Secao 1

Nesta primeira segao, exploramos em profundidade a histoéria e evolugao do
PowerShell, desde sua concepgao como Projeto Monad até as versdes modernas

multiplataforma. Compreendemos seu posicionamento estratégico no
ecossistema Microsoft e as diferencas fundamentais entre Windows PowerShell
5.1 e PowerShell 7+.

Também realizamos uma configuragao completa do ambiente, incluindo
instalagcdo em diferentes sistemas operacionais, configuracéo de execution
policies, criagcao de profiles personalizados e instalagcao de ferramentas
complementares essenciais.

Com este ambiente preparado, vocé esta pronto para comecar a explorar os
recursos e capacidades do PowerShell de forma pratica e eficiente.

2. COMANDOS E SINTAXE BASICA

2.1 Cmdlets, Parametros e Pipeline
2.1.1 Conceito e Estrutura de Cmdlets
O que é um Cmdlet?

Um cmdlet (pronuncia-se "command-let") é a unidade fundamental de comando
no PowerShell. Diferente de comandos tradicionais que sao programas
executaveis, cmdlets sao classes .NET especializadas compiladas em assemblies
que sao carregados pelo PowerShell.

Caracteristicas fundamentais dos cmdlets:
e S&o0 comandos nativos do PowerShell escritos em C# ou PowerShell
e Seguem um padrao consistente de nomenclatura
e Trabalham com objetos .NET, ndo apenas texto
e Suportam parametros padronizados
e Integram-se perfeitamente ao pipeline
e Possuem sistema de ajuda incorporado
Convencao de Nomenclatura: Verbo-Substantivo

Todos os cmdlets seguem a convencgao Verbo-Substantivo (Verb-Noun),
tornando-os intuitivos e faceis de lembrar.

Estrutura:

Verbo-Substantivo

| Lo que esta sendo manipulado (objeto)
|—Agéo que esta sendo executada
Exemplos praticos:

Get-Process # Obtém processos em execugcao
Stop-Service # Para um servigco

New-ltem # Cria um novo item (arquivo, pasta, etc.)
Set-Location # Define a localizacao atual
Remove-ltem # Remove um item

Test-Connection # Testa conectividade de rede
Verbos Aprovados

O PowerShell possui uma lista de verbos aprovados para garantir consisténcia. Os
verbos sdo agrupados por categoria:

Verbos Comuns (Common):

Get-Verb | Where-Object Group -eq 'Common'’

Verbo Significado Exemplo

Get Obtém um recurso Get-Service

Set Define ou modifica um recurso Set-ExecutionPolicy
New Cria um novo recurso New-Item

Remove Exclui um recurso Remove-Item

Add Adiciona a uma colegao Add-Content

Clear Remove conteldo mas mantém o objeto Clear-Content
Copy Copiaumrecurso Copy-ltem
Move Move um recurso Move-ltem

Rename Renomeia um recurso Rename-ltem

Verbos de Dados (Data):

Verbo Significado Exemplo
Import Importa dados Import-Csv
Export Exporta dados Export-Clixml

ConvertTo Converte paraformato ConvertTo-Json
ConvertFrom Converte de formato ConvertFrom-Json
Compare Compara objetos Compare-Object

Select Seleciona propriedades Select-Object

Verbos de Comunicacao (Communications):
Verbo Significado Exemplo
Connect Estabelece conexdo Connect-PSSession

Disconnect Encerra conexao Disconnect-PSSession

Read Lé dados Read-Host

Write Escreve dados Write-Output

Send Envia dados Send-MailMessage
Receive Recebe dados Receive-Job

Verbos de Ciclo de Vida (Lifecycle):
Verbo Significado Exemplo
Start Iniciaumrecurso Start-Service

Stop Para um recurso Stop-Process

Verbo Significado Exemplo
Restart Reinicia um recurso Restart-Computer
Suspend Pausa umrecurso Suspend-Service

Resume Retoma um recurso Resume-Service

Listar todos os verbos aprovados:
Ver todos os verbos

Get-Verb | Format-Table -AutoSize

Contar verbos por grupo

Get-Verb | Group-Object Group | Sort-Object Count -Descending

Buscar verbos especificos

Get-Verb -Verb *move*

Anatomia de um Cmdlet

Vamos analisar a estrutura completa de um cmdlet:
Get-Childltem -Path C:\Users -Filter *.txt -Recurse -Force

|
| | L parametro switch
|
I

I Parametro switch

Parametro nomeado

Parametro nomeado

Cmdlet

Componentes:
1. Cmdlet: O comando principal (Get-Childltem)

2. Parametros nomeados: Aceitam valores (-Path C:\Users)

3. Parametros switch: Booleanos, ativados pela presenca (-Recurse)
4. Valores: Dados passados aos parametros (C:\Users, *.txt)

2.1.2 Parametros

Tipos de Parametros

1. Parametros Posicionais

Podem ser especificados sem o nome, baseados na posicao:

Com nome do pardmetro

Get-Childltem -Path C:\Windows

Sem nome (posicional) - funciona se Path for o primeiro pardmetro

Get-Childltem C:\Windows

Multiplos pardmetros posicionais
Copy-ltem C:\origem.txt C:\destino.txt
Equivalente a:
Copy-ltem -Path C:\origem.txt -Destination C:\destino.txt
2. Parametros Nomeados
Especificados explicitamente com o nome:
Get-Service -Name wuauserv
Get-Process -Name notepad
Get-Content -Path arquivo.txt -Encoding UTF8
Vantagens dos parametros nomeados:

e Clarezae legibilidade

e Nao dependem de ordem

e Autocompletar funciona melhor

e Recomendados em scripts de producao
3. Parametros Switch

Parametros booleanos que nao requerem valor:

Ativar o switch
Get-Childltem -Recurse

Get-Process -IncludeUserName

Desativar explicitamente (raro)

Get-Childltem -Recurse:$false

Atribuir a variavel

$recursivo = $true

Get-Childltem -Recurse:$recursivo

4. Parametros Obrigatorios vs Opcionais

Obrigatorio - cmdlet solicita se ndo for fornecido
New-ltem -ltemType File

PowerShell perguntara: Path?

Opcional - tem valor padrdo

Get-Childltem

Usa o diretdrio atual como padrdo

Parametros Comuns (Common Parameters)

Todos os cmdlets avancados suportam pardmetros comuns automaticamente:
-Verbose: Mostra mensagens detalhadas

Get-Process -Verbose

#-Debug: Mostra mensagens de depuragéo

Get-Service -Debug

-ErrorAction: Controla comportamento de erros

Get-ltem "C:\naoexiste.txt" -ErrorAction SilentlyContinue

-ErrorVariable: Armazena erros em variavel
Get-Service -Name "Servicolnexistente" -ErrorVariable meuErro

$meuErro

-WarningAction: Controla exibicdo de avisos

Get-Process -WarningAction Ignore

-InformationAction: Controla mensagens informativas

Write-Information "Processando..." -InformationAction Continue

-OutVariable: Captura saida em variavel
Get-Process -Name notepad -OutVariable processos

$processos

-Whatlf: Simula execu¢do sem executar (dry-run)

Remove-Item C:\teste.txt -Whatlf

-Confirm: Solicita confirmacéao
Stop-Service wuauserv -Confirm
ErrorAction - Valores possiveis:
Continue (padréo): Exibe erro e continua

Get-ltem "C:\naoexiste.txt" -ErrorAction Continue

SilentlyContinue: Suprime erro e continua

Get-ltem "C:\naoexiste.txt" -ErrorAction SilentlyContinue

Stop: Trata como erro terminante

Get-ltem "C:\naoexiste.txt" -ErrorAction Stop

Inquire: Pergunta ao usuario o que fazer

Get-ltem "C:\naoexiste.txt" -ErrorAction Inquire

Ignore: Ignora completamente (ndo adiciona ao $Error)
Get-ltem "C:\naoexiste.txt" -ErrorAction Ignore
Descobrindo Parametros

Usando Get-Command:

Ver sintaxe basica

Get-Command Get-Process

Ver todos os conjuntos de pardmetros

Get-Command Get-Process -Syntax

Detalhes completos

Get-Command Get-Process | Format-List *
Usando Get-Help:

Ajuda completa

Get-Help Get-Process -Full

Apenas pardmetros

Get-Help Get-Process -Parameter *

Pardmetro especifico

Get-Help Get-Process -Parameter Name

Exemplos praticos

Get-Help Get-Process -Examples
Usando IntelliSense e Tab Completion:
Digite o cmdlet e pressione espaco, depois Ctrl+Espaco

Get-Process <Ctrl+Espaco>

Ou use Tab para percorrer pardmetros

Get-Process -<Tab>

Tab completion também funciona com valores
Get-Service -Name w<Tab>
Abreviacao de Parametros

O PowerShell permite abreviar nomes de pardmetros, desde que a abreviagao seja
Unica:

Completo

Get-Process -Name notepad

Abreviado

Get-Process -N notepad

Também funciona

Get-Process -Na notepad

Erro: ambiguo (pode ser Name ou Path)
Get-Childltem -P # X Erro

I. Aviso importante: Embora abreviacées funcionem, NAO as use em scripts
de producao. Use sempre nomes completos para clareza e manutenibilidade.

Passando Miiltiplos Valores

Muitos parametros aceitam arrays:

Array explicito

Get-Process -Name notepad, chrome, explorer

Array criado com operador de virgula
$processos = "notepad", "chrome"

Get-Process -Name $processos

Pipeline

"notepad", "chrome", "explorer" | Get-Process

Range (apenas para tipos apropriados)
1..10 | Get-Random -Count 3

2.1.3 Pipeline - O Coracao do PowerShell
Conceito e Funcionamento

O pipeline (representado pelo simbolo |) € um dos recursos mais poderosos do
PowerShell. Ele permite encadear comandos, passando a saida de um como
entrada do préximo.

Diferenca fundamental em relacao a shells Unix:
Unix/Linux (passa TEXTO)

s -l] grep "txt"

PowerShell (passa OBJETOS)

Get-Childltem | Where-Object Extension -eq ".txt"

Fluxo de dados no pipeline:

Cmdlet 1 » Objeto » Cmdlet 2 » Objeto » Cmdlet 3 > Resultado
Pipeline Basico

Obter processos e filtrar

Get-Process | Where-Object CPU -gt 100

Obter servicos, filtrar e ordenar

Get-Service | Where-Object Status -eq 'Running' | Sort-Object Name

Obter arquivos, selecionar propriedades

Get-Childltem | Select-Object Name, Length, LastWriteTime

Cadeia longa

Get-Process |
Where-Object WorkingSet -gt 100MB |
Sort-Object WorkingSet -Descending |
Select-Object -First 10 |

Format-Table Name, Id, @{Name='RAM(MB)';Expression={$_.WorkingSet / TMB}}
-AutoSize

Vinculagao de Pipeline (Pipeline Binding)

O PowerShell usa dois métodos para vincular objetos no pipeline aos parametros:
1. ByValue (Por Valor)

O objeto inteiro é passado e o cmdlet procura um pardmetro que aceite esse tipo:
String é passada para o pardmetro -Name

"wuauserv", "spooler" | Get-Service

Como descobrir o que aceita ByValue

Get-Help Get-Service -Parameter Name

Vera: Accept pipeline input: True (ByValue, ByPropertyName)

2. ByPropertyName (Por Nome de Propriedade)

Propriedades do objeto sdo mapeadas para pardmetros com 0 mesmo nome:
Objeto tem propriedade 'Name, mapeada para -Name

Get-Service wuauserv | Stop-Service

Verificar mapeamento
Get-Service wuauserv | Get-Member -MemberType Properties

Vera a propriedade Name

Get-Help Stop-Service -Parameter Name
Vera: Accept pipeline input: True (ByPropertyName, ByValue)
Exemplo complexo de ByPropertyName:
Criar objetos customizados
$computadores = @(
[PSCustomObject]@{ComputerName = 'Server01'; Path ='C:\Logs'}

[PSCustomObject]@{ComputerName = 'Server02'; Path = 'C:\Logs'}

As propriedades sdo automaticamente mapeadas
$computadores | Get-Childitem

ComputerName > -ComputerName

Path > -Path

Pipeline Variables (Variaveis Automaticas)

Dentro do pipeline, existem variaveis especiais:
#$_ou $PSitem - representa o objeto atual

Get-Process | Where-Object { $_.CPU -gt 100 }

Acessando propriedades

Get-Service | ForEach-Object { "Servigo: $($_.Name) - Status: $($_.Status)" }

Chamando métodos
Get-Process notepad | ForEach-Object{ $_.Kill() }

Cmdlets Essenciais para Pipeline

Where-Object (Filtragem):
Sintaxe simplificada (PS 3.0+)

Get-Process | Where-Object CPU -gt 50

Sintaxe de script block (mais flexivel)

Get-Process | Where-Object{ $_.CPU -gt 50 -and $_.WorkingSet -gt 100MB }

Mdltiplas condicbes
Get-Service | Where-Object {
$_.Status -eq 'Running' -and

$_.StartType -eq 'Automatic’

Operadores comuns

Get-Childltem | Where-Object Name -like "*.txt"
Get-Childltem | Where-Object Length -ge 1TMB

Get-Process | Where-Object ProcessName -match "*chrome"
Select-Object (Selecao e Transformacao):

Selecionar propriedades especificas

Get-Process | Select-Object Name, Id, CPU

Primeiros N elementos

Get-Process | Select-Object -First 5

Ultimos N elementos

Get-Process | Select-Object -Last 5

Pular elementos

Get-Process | Select-Object -Skip 10 -First 5

Propriedades unicas

Get-Process | Select-Object ProcessName -Unique

Propriedades calculadas
Get-Process | Select-Object Name,
@{Name='CPUTime'; Expression={$_.CPU}},

@{Name='"MemoryMB'; Expression={$_.WorkingSet / 1TMB}}

Propriedades calculadas com formatacéao
Get-Childltem | Select-Object Name,
@{Name='SizeMB'; Expression={'{0:N2}' -f ($_.Length / 1MB)}}
Sort-Object (Ordenacao):
Ordenacéo ascendente (padrao)

Get-Process | Sort-Object CPU

Ordenacéao descendente

Get-Process | Sort-Object CPU -Descending

Multiplas chaves

Get-Process | Sort-Object Company, Name

Com tipos diferentes

Get-Childltem | Sort-Object LastWriteTime -Descending

Ordenacgéao customizada (caso sensivel)

Get-Service | Sort-Object Name -CaseSensitive

ForEach-Object (Iteracao):
Sintaxe basica

Get-Process | ForEach-Object{$_.Name}

Multiplas operacées
Get-Childltem -File | ForEach-Obiject {
Write-Host "Processando: $($_.Name)"

$_.LastWriteTime = Get-Date

Com Begin, Process, End

1..10 | ForEach-Object -Begin {
Write-Host "Iniciando..."
$soma=0

}-Process {
$soma+=$_

}-End{

Write-Host "Soma total: $soma”

Processamento paralelo (PS 7.0+)

1..10 | ForEach-Object -Parallel {
Start-Sleep -Seconds 1
"Processado: $ "

} -ThrottleLimit 5

Group-Object (Agrupamento):

Agrupar por propriedade

Get-Service | Group-Object Status

Com contagem

Get-Process | Group-Object Company | Sort-Object Count -Descending

Multiplas propriedades
Get-Childltem | Group-Object Extension, @{Expression={
if($_.Length -gt 1MB){'Grande'}else{'Pequeno'}

1

Acessar grupos
$grupos = Get-Process | Group-Object Company
$grupos | ForEach-Object {

Write-Host "$($_.Name): $($_.Count) processos"
}
Measure-Object (Calculos):
Contar objetos

Get-Process | Measure-Object

#Soma

Get-Childltem -File | Measure-Object -Property Length -Sum

Estatisticas completas

Get-Process | Measure-Object -Property CPU -Average -Sum -Maximum -Minimum

Multiplas propriedades
Get-Process | Measure-Object -Property CPU, WorkingSet -Average

Formatacao de Saida

1. IMPORTANTE: Cmdlets de formatacéo (Format-*) devem ser sempre os
ultimos no pipeline, pois convertem objetos em formatagao, quebrando o
pipeline.

Format-Table:
Basico

Get-Process | Format-Table

Propriedades especificas

Get-Process | Format-Table Name, Id, CPU

AutoSize para ajustar colunas

Get-Process | Format-Table Name, Id, CPU -AutoSize

GroupBy

Get-Service | Format-Table -GroupBy Status

Propriedades calculadas
Get-Process | Format-Table Name,
@{Label='CPU(s)'; Expression={$_.CPU}; Width=10; Alignhment='Right'}
Format-List:
Todas as propriedades

Get-Process -Name powershell | Format-List *

Propriedades especificas

Get-Service wuauserv | Format-List Name, Status, StartType

Util para objetos complexos
Get-Computerinfo | Format-List

Format-Wide:

Exibicdo em colunas

Get-Process | Format-Wide Name

Especificar numero de colunas
Get-Process | Format-Wide Name -Column 4
Out-GridView:

Interface grafica interativa

Get-Process | Out-GridView

Com selecao

Get-Service | Out-GridView -PassThru | Start-Service

Modo de saida

$selecionados = Get-Process | Out-GridView -OutputMode Multiple
Exportacao de Dados

Out-File:

Salvar em arquivo texto

Get-Process | Out-File processos.txt

Com encoding especifico

Get-Process | Out-File processos.txt -Encoding UTF8

Append

Get-Service | Out-File servicos.txt -Append

Largura de linha
Get-Process | Out-File processos.txt -Width 200

Export-Csv:

Exportar para CSV

Get-Process | Export-Csv processos.csv

Sem informacgédes de tipo

Get-Process | Export-Csv processos.csv -NoTypelnformation

Com delimitador customizado

Get-Process | Export-Csv processos.csv -Delimiter ;'

Encoding

Get-Service | Export-Csv servicos.csv -Encoding UTF8
Export-Clixml:

Serializacdo completa de objetos

Get-Process | Export-Clixml processos.xml

Importar posteriormente

$processos = Import-Clixml processos.xml
ConvertTo-Json / ConvertTo-Html:
#JSON

Get-Process | Select-Object Name, Id, CPU | ConvertTo-Json

#JSON com profundidade

Get-Computerinfo | ConvertTo-Json -Depth 3

#HTML

Get-Service | ConvertTo-Html -Title "Servigos" | Out-File servicos.html

HTML com CSS

$css = @"
<style>
body { font-family: Arial; }
table { border-collapse: collapse; }
th, td { border: 1px solid black; padding: 5px; }
th { background-color: #4CAF50; color: white; }
</style>
'@
Get-Process | ConvertTo-Html -Head $css | Out-File processos.html
Pipeline Avancado - Técnicas
1. Pipeline com multiplas transformacoes:
Get-EventLog -LogName Application -Newest 100 |
Where-Object EntryType -eq 'Error' |
Group-Object Source |
Select-Object Name, Count |
Sort-Object Count -Descending |
Format-Table -AutoSize
2. Pipeline com foreach e variaveis:
$relatorio = Get-Process |
Where-Object CPU -gt 10 |
ForEach-Object {
[PSCustomObject]@{
Nome =$_.Name
CPU =[math]::Round($_.CPU, 2)
MemoriaMB = [math]::Round($_.WorkingSet / 1MB, 2)

Threads =$_Threads.Count

$relatorio | Export-Csv relatorio_processos.csv -NoTypelnformation
3. Pipeline com validacao:
Get-Childltem -Path C:\Logs -Filter *.log |
Where-Object LastWriteTime -lt (Get-Date).AddDays(-30) |
ForEach-Object {
Write-Host "Deletando arquivo antigo: $($_.Name)"
Remove-Item $_.FullName -Whatlf
}
4. Pipeline com tratamento de erros:

$servidores ='Server01', 'Server02', 'Serverlnexistente'

$servidores | ForEach-Object {
try {
Test-Connection -ComputerName $_ -Count 1 -ErrorAction Stop
[PSCustomObject]@{
Servidor=$_
Status ='Online'

Erro = $null

}

catch{
[PSCustomObject]@{
Servidor=$_
Status ="Offline'

Erro = $_.Exception.Message

} | Format-Table -AutoSize

2.1.4 Descoberta de Comandos
Get-Command - Encontrando Cmdlets
Todos os comandos disponiveis

Get-Command

Filtrar por tipo
Get-Command -CommandType Cmdlet
Get-Command -CommandType Function

Get-Command -CommandType Alias

Buscar por padrdo
Get-Command -Name *Service*
Get-Command -Verb Get

Get-Command -Noun Process

Buscar em mddulo especifico

Get-Command -Module Microsoft.PowerShell.Management

Buscar com wildcard

Get-Command Get-*ltem*

Ver definicdo

Get-Command Get-Process | Format-List *
Get-Help - Sistema de Ajuda

Ajuda basica

Get-Help Get-Process

Ajuda detalhada

Get-Help Get-Process -Detailed

Ajuda completa

Get-Help Get-Process -Full

Apenas exemplos

Get-Help Get-Process -Examples

Ajuda online (abre no browser)

Get-Help Get-Process -Online

Buscar na ajuda

Get-Help *firewall*

Atualizar arquivos de ajuda
Update-Help -Force

Get-Member - Explorando Objetos
Ver membros de um objeto

Get-Process | Get-Member

Apenas propriedades

Get-Process | Get-Member -MemberType Property

Apenas métodos

Get-Process | Get-Member -MemberType Method

Buscar membro especifico

Get-Process | Get-Member -Name *Memory*

Ver tipo do objeto
(Get-Process)[0].GetType()
Aliases - Atalhos para Comandos
Ver todos os aliases

Get-Alias

Alias especifico

Get-Alias Is

Qual comando por tras do alias

Get-Alias -Definition Get-Childltem

Criar alias temporario

Set-Alias -Name np -Value notepad.exe

Criar alias permanente (adicionar ao profile)

New-Alias -Name gh -Value Get-Help

Remover alias
Remove-Alias -Name np

Aliases comuns do PowerShell:

Alias Cmdlet Origem

ls, dir, gci Get-Childltem Unix/DOS/PS
cd, chdir, sl Set-Location DOS/PS

cp, copy, cpi Copy-ltem Unix/DOS/PS

Alias Cmdlet Origem
mv, move, mi Move-Item Unix/DOS/PS
rm, del, erase, ri Remove-ltem Unix/DOS/PS

cat, type, gc Get-Content Unix/DOS/PS

ps, gps Get-Process Unix/PS
kill, spps Stop-Process Unix/PS
cls, clear Clear-Host DOS/Unix
man, help Get-Help Unix/DOS
pwd, gl Get-Location Unix/PS

. Importante: Evite usar aliases em scripts de producéo. Use sempre os nomes
completos dos cmdlets para clareza e manutenibilidade.

2.2 Estruturas Condicionais e de Repeticao

2.2.1 Variaveis no PowerShell

Antes de trabalhar com estruturas de controle, precisamos entender variaveis.
Declaracao e Atribuicao

Declaracdo simples (tipagem dindmica)

$nome = "Jodo"

$idade = 30

$ativo = $true

PowerShell infere o tipo automaticamente
$numero =42 # System.Int32
$texto = "PowerShell" # System.String

$decimal=3.14 # System.Double

Tipagem explicita (fortemente tipado)
[int]$quantidade = 100
[string]$mensagem ="0l3"
[datetime]$data = "2025-01-15"

[bool]$habilitado = $true

Mdltiplas atribuicbées

$a,$b,%$c=1,2,3

$x=8y=$z=0

Tipos de Dados Comuns

Numéricos

[byte]$byte = 255 #0-255

[int16]$curto = 32767 #-32,768a 32,767
[int]$inteiro = 2147483647 #-2.1Ba2.1B
[long]$longo = 9223372036854775807
[single]$flutuante = 3.14159

[double]$duplo = 3.141592653589793

[decimal]$monetario = 99.99

Texto
[string]$texto = "PowerShell"

[char]$caractere = 'A'

Booleano
[bool]$verdadeiro = $true

[bool]$falso = $false

Data e hora
[datetime]$agora = Get-Date

[datetime]$especifica ="2025-10-15 15:00:00"

Arrays
[array]$numeros =1, 2, 3, 4,5

[int[]]$inteiros =10, 20, 30

Hashtables
[hashtable]$pessoa = @]
Nome = "Maria"
Idade = 28

Cidade ="Sao Paulo"

Objetos customizados
[PSCustomObject]$produto = @{

Nome = "Notebook"

Preco = 3500.00

Estoque =15
}
Variaveis Automaticas
PowerShell possui variaveis automaticas predefinidas:
Variaveis do sistema
$PSVersionTable # Informagédes da versédo
$HOME # Diretorio home do usuario
$PWD # Diretorio atual

$PID #ID do processo atual

Variaveis de resultado

$? # Status do ultimo comando (true/false)
$_ ou $PSltem # Item atual no pipeline

$” # Primeiro token do ultimo comando

$$ # Ultimo token do dltimo comando

Variaveis de erro
$Error # Array com todos os erros

$LastExitCode # Cddigo de saida do ultimo programa nativo

Outras uteis

$null # Valor nulo
$true / $false # Booleanos
Escopo de Variaveis

Escopo local (padrao)

$local = "Visivel apenas aqui"

Escopo script (todo o script)

$script:configuracao = "Disponivel no script inteiro'

Escopo global (toda a sesséo)

$global:importante = "Visivel em todo lugar"

Escopo privado (ndo herdado por child scopes)

$private:secreto = "N&o vaza"

Exemplo de uso

function Teste {
$local = "Fungao"
$script:nivel = "Script"
Write-Host "Local: $local"
}
Teste
Write-Host "Script: $nivel”
Write-Host "Local: $local" # X Erro - fora do escopo
2.2.2 Operadores
Operadores Aritméticos
Operacébes basicas
$a=10

$b=3

$a+$b #13-Adicdo
$a-$b #7 -Subtracéo
$a*3$b #30-Multiplicagdo
$a/$b #3.333... - Divisdo

$a% $b #1 - Mbdulo (resto)

Incremento e decremento
$contador=0

$contador++ #1

$contador-- #0

++$contador # 1 (pré-incremento)

--$contador # 0 (pré-decremento)

Operagcbes compostas

$total =100

$total += 50 # $total = $total + 50
$total -= 20 # $total = $total - 20
$total *=2 # $total = $total *2
$total /=4 # $total = $total / 4
Operadores de Comparacao

Igualdade

$a-eq$b #lguala

$a-ne $b # Diferente de

Maior/Menor

$a-gt$b #Maior que
$a-ge$b # Maiorou igual
$a-lt$b # Menorque

$a-le$b # Menorou igual

Strings (case-insensitive por padréo)
"PowerShell" -eq "powershell" # True

"PowerShell" -ceq "powershell" # False (case-sensitive)

Like (wildcard)
"PowerShell" -like "Power*" # True

"PowerShell" -notlike "Java*" # True

Match (regex)
"PowerShell" -match "*Power" # True

"teste123" -match "\d+" # True

Contains (colec¢bes)
1,2,3,4,5 -contains 3 # True

"Jodo","Maria" -notcontains "Pedro" # True

In (elemento em colegéo)
3-in1,2,3,4,5 # True

"Pedro" -notin "Jodo""Maria" # True

Operadores case-sensitive (prefixo 'c’)

"PowerShell" -ceq "PowerShell" # True (case-sensitive equal)
"PowerShell" -cne "powershell" # True (case-sensitive not equal)
"PowerShell" -clike "POWER*" # False

"PowerShell" -cmatch "*power" # False

Operadores Légicos

#AND

($a -gt 5) -and ($b -lt 10)

#OR

($a-eq 10) -or ($b -eq 3)
#NOT
-not ($a -eq 10)

($a-eq10) #Alternativa

XOR (exclusivo)

($a-eq 10) -xor ($b -eq 3)

Exemplos praticos

if ($idade -ge 18) -and ($habilitado -eq $true)) {

Write-Host "Acesso permitido”

if ($status -eq "Ativo") -or ($tipo -eq "VIP")) {
Write-Host "Processamento prioritario"

}

Operadores de Atribuicao

Atribuicdo simples

$x=10

Atribuicbes compostas
$x+=5 #$x=%x+5
$x-=3 #$x=%x-3
$x*=2 #Px=%x*2
$x/=4 #$x=%$x/4

$x%=3 #$x=%x% 3

Operador de atribuicdo com null coalescing (PS 7+)

$nome ??="Padrao" # Atribui apenas se $nome for $null

Exemplos

$total=0

$total += 100

$total += 50

Write-Host "Total: $total" # 150
Operadores Especiais

Range (intervalo)

1..10 #Arrayde 1a 10
10..1 #Arrayde 10a 1

$inicio..$fim

Call (invocar)
& "C:\Scripts\teste.ps1"

& { Write-Host "Script block" }

Dot source (executar no escopo atual)

. "C:\Scripts\funcoes.ps1"

Array subexpression

@(Get-Process) # Garante que retorna array

Subexpression

"O resultado é: $(2 + 2)" # "O resultado é: 4"

Type cast
[int]"42" # Converte string para int

[string]123 # Converte int para string

Comma (criar array)

$array=1,2,3,4

Index (acessar elementos)
$array[0] # Primeiro elemento
$array[-1] # Ultimo elemento

$array[1..3] #Elementos 1,2¢e 3

Join (juntar strings)

$nomes -join ", " # "Jogo, Maria, Pedro”

Split (dividir strings)

"Jodo,Maria,Pedro" -split ",

Replace (substituir)

"PowerShell" -replace "Power", "Super" # "SuperShell”

Operador ternario (PS 7+)

$resultado = $idade -ge 18 ? "Adulto" : "Menor"

Null coalescing (PS 7+)
$valor = $null

$padrao = $valor ?? "Padrao" # "Padrdo"

Pipeline chain (PS 7+)

Get-Process && Write-Host "Sucesso" # Executa se anterior tiver sucesso
Get-Process || Write-Host "Falha" # Executa se anterior falhar

2.2.3 Estruturas Condicionais

If, Elself, Else

Sintaxe basica:

if (condicao) {

cddigo se condicéo verdadeira

if (condicao) {

cddigo se condicéo verdadeira
} else {

codigo se condicéo falsa

if (condigao1) {

codigo se condicao1 verdadeira
} elseif (condicdo2) {

codigo se condicado?2 verdadeira
}else{

codigo se todas falsas
}
Exemplos praticos:
Exemplo 1: Verificacao simples

$idade =25

if (idade -ge 18) {

Write-Host "Vocé é maior de idade"

Exemplo 2: If-Else

$nota=7.5

if ($nota -ge 7) {
Write-Host "Aprovado" -ForegroundColor Green
} else {

Write-Host "Reprovado" -ForegroundColor Red

Exemplo 3: If-Elself-Else (classificagcdo)

$nota =8.5

if ($nota -ge 9) {
$conceito ="A"
}elseif ($nota -ge 7) {
$conceito ="B"
}elseif ($nota -ge 5) {
$conceito ="C"
} else{
$conceito ="D"

}

Write-Host "Conceito: $conceito"

Exemplo 4: Condi¢cbées compostas
$saldo = 1500
$limite = 2000

$ativo = $true

if ($saldo -gt 0) -and $ativo) {
Write-Host "Conta ativa com saldo positivo"
} elseif (($saldo -le 0) -and $ativo) {
Write-Host "Conta ativa mas sem saldo”
} else {

Write-Host "Conta inativa"

Exemplo 5: Verificando existéncia

$arquivo = "C:\temp\teste.txt"

if (Test-Path $arquivo) {

$conteudo = Get-Content $arquivo

Write-Host "Arquivo existe. Linhas: $($conteudo.Count)"
}else{

Write-Host "Arquivo nao encontrado”

New-Item -Path $arquivo -ltemType File

Exemplo 6: Verificando tipo de objeto

$objeto = Get-Process | Select-Object -First 1

if (Jobjeto -is [System.Diagnostics.Process]) {

Write-Host "E um objeto Process"

Exemplo 7: Verificando nulo

$variavel = $null

if ($null -eq $variavel) {

Write-Host "Variavel é nula"

Ou forma mais moderna (PS 7+)
if (-not $variavel) {

Write-Host "Variavel é nula, vazia ou false"

}

Switch
O Switch é ideal para multiplas comparagdes com o mesmo valor.
Sintaxe basica:
switch (expressao) {
valor1 { cédigo1 }
valor2 { cédigo2 }
default { codigo padrao }
}
Exemplos praticos:
Exemplo 1: Switch basico

$dia = "Segunda"

switch ($dia) {
"Segunda" {Write-Host "Inicio da semana"}
"Sexta" {Write-Host "Quase fim de semana!"}
"Sabado" {Write-Host "Final de semana!"}
"Domingo" { Write-Host "Final de semana!" }

default {Write-Host "Meio da semana"}

Exemplo 2: Switch com multiplos valores

$numero =2

switch ($numero) {
{$_-lt0} {Write-Host "Negativo"}
0 {Write-Host "Zero" }

{$_-gt0} {Write-Host "Positivo"}

Exemplo 3: Switch com arrays

$cores ="Vermelho", "Azul", "Verde"

switch ($cores) {
"Vermelho" { Write-Host "Cor quente" }
"Azul" {Write-Host "Cor fria" }

"Verde" {Write-Host "Cor neutra"}

Exemplo 4: Switch com Regex

$texto = "PowerShell123"

switch -Regex ($texto) {
'"\Ww+$' { Write-Host "Apenas letras e nUmeros" }
\d+' {Write-Host "Contém digitos" }

"“Power' {Write-Host "Comeca com Power"}

Exemplo 5: Switch com Wildcard

$arquivo = "relatorio_2025.xlsx"

switch -Wildcard ($arquivo) {
"*txt" {Write-Host "Arquivo de texto" }
"* xlsx" { Write-Host "Planilha Excel" }
"* pdf" {Write-Host "Documento PDF"}

default {Write-Host "Tipo desconhecido" }

Exemplo 6: Switch com File (lé linhas de arquivo)
$configFile = "C:\temp\config.txt"

"Server01","Server02","Server03" | Out-File $configFile

switch -File $configFile {
"Server01" { Write-Host "Processando Server01" }
"Server02" { Write-Host "Processando Server02" }

default {Write-Host "Servidor: $_"}

Exemplo 7: Switch case-sensitive

$texto = "PowerShell"

switch -CaseSensitive ($texto) {
"powershell" { Write-Host "Minusculo" }
"POWERSHELL" { Write-Host "Maiutsculo" }

"PowerShell" { Write-Host "Capitalizado" }

Exemplo 8: Switch com break

$numero=5

switch ($numero) {
{$_-gtO}{
Write-Host "Positivo"

Continue para proxima avaliagédo

}
{$_-eq 5}{
Write-Host "E cinco"
break # Para execugdo aqui
}
{$_-lt 10}{

Write-Host "Menor que 10" # Ndo sera executado por causa do break

}

Operador Ternario (PowerShell 7+)

Sintaxe: condicdo ?valor_se_true : valor_se_false

Exemplo 1: Atribuicdo simples
$idade = 20
$categoria = $idade -ge 18 ? "Adulto" : "Menor"

Write-Host $categoria # Adulto

Exemplo 2: Em expressées
$nota =8

Write-Host ($nota -ge 7 ? "Aprovado" : "Reprovado")

Exemplo 3: Aninhado
$pontos =85
$nivel = $pontos -ge 90 ? "Ouro" : $pontos -ge 70 ? "Prata" : "Bronze"

Write-Host $nivel # Prata

Exemplo 4: Com operadores

$saldo =100

$taxa = $saldo-gt 0?2 0.05: 0

$total = $saldo + ($saldo * $taxa)

Write-Host "Total: $total"

2.2.4 Estruturas de Repeticao

For Loop

O loop for é usado quando vocé sabe quantas vezes quer iterar.

Sintaxe:

for (inicializagao; condicao; incremento) {
codigo

}

Exemplos praticos:

Exemplo 1: Loop basico

for ($i=0; $i-lt 10; $i++) {

Write-Host "lteragéo: $i"

Exemplo 2: Loop decrescente
for ($i = 10; $i -ge 0; $i--) {

Write-Host "Contagem regressiva: $i"

Exemplo 3: Pularde 2em 2
for ($i = 0; $i -le 20; $i +=2){

Write-Host "Numero par: $i"

Exemplo 4: Percorrer array com indice

$frutas = "Macga", "Banana", "Laranja", "Uva"

for ($i = 0; $i -lt $frutas.Count; $i++) {

Write-Host "[$i] $($frutas[$i])"

Exemplo 5: Loop aninhado (tabuada)
for ($i = 1; $i -le 5; $i++) {
Write-Host " nTabuada do $i :"
for ($j=1; $j -le 10; $j++) {
$resultado = $i * $j

Write-Host "$i x $j = $resultado”

Exemplo 6: Mdltiplas variaveis
for ($i=0, $j = 10; $i -1t 5; $i++, $j--) {

Write-Host "i = $i, j = $j"

Exemplo 7: Processando arquivos

$arquivos = Get-Childltem -Path C:\Temp -Filter *.txt

for ($i = 0; $i -lt $arquivos.Count; $i++) {

Write-Host "Processando arquivo $($i+1) de $($arquivos.Count):
$($arquivos[$i].Name)"

}
ForEach Loop

O loop foreach itera sobre cole¢des de objetos.

Sintaxe:

foreach ($item in $colecao) {
codigo

}

Exemplos praticos:

Exemplo 1: Iterar sobre array

$numeros=1,2,3,4,5

foreach ($num in $numeros) {
$quadrado = $num * $num

Write-Host "$num ao quadrado = $quadrado"

Exemplo 2: Iterar sobre processos

$processos = Get-Process | Select-Object -First 5

foreach ($proc in $processos) {

Write-Host "Processo: $($proc.Name) - ID: $($proc.Id)"

Exemplo 3: Iterar sobre arquivos

$arquivos = Get-Childltem -Path C:\Temp -File

foreach ($arquivo in $arquivos) {
$tamanhoKB =[math]::Round($arquivo.Length / 1KB, 2)

Write-Host "$($arquivo.Name): $tamanhoKB KB"

Exemplo 4: Iterar sobre hashtable
$configuracoes = @]

Servidor ="192.168.1.100"

Porta = 8080

SSL = $true

foreach ($config in $configuracoes.GetEnumerator()) {

Write-Host "$($config.Key) = $($config.Value)"

Exemplo 5: Modificar elementos (nota: arrays sdo imutaveis)

$nomes ="jodo", "maria", "pedro"

$nomesCapitalizados = @()

foreach ($nome in $nomes) {
$nomesCapitalizados += (Get-Culture).TextInfo.ToTitleCase($nome)

}

$nomesCapitalizados

Exemplo 6: ForEach com objetos customizados

$funcionarios = @(
[PSCustomObject]@{Nome="Jo&o"; Salario=3000}
[PSCustomObject]@{Nome="Maria"; Salario=3500}

[PSCustomObject]@{Nome="Pedro"; Salario=2800}

foreach ($func in $funcionarios) {

$aumento = $func.Salario * 0.10
$novoSalario = $func.Salario + $aumento

Write-Host "$($func.Nome): R$ $($func.Salario) = R$ $novoSalario"

Exemplo 7: ForEach aninhado
$servidores ="Server01", "Server02"

$servicos = "wuauserv", "spooler"

foreach ($servidor in $servidores) {
Write-Host " nVerificando $servidor :"
foreach ($servico in $servicos) {
Simulacao - em producgéo usaria Invoke-Command

Write-Host " Verificando servigo $servico"

}
While Loop

O loop while executa enquanto uma condicao for verdadeira.
Sintaxe:
while (condigao) {
cddigo
}
Exemplos praticos:
Exemplo 1: Contador simples

$contador=0

while ($contador -1t 5) {

Write-Host "Contador: $contador”

$contador++

Exemplo 2: Aguardar condicao

$processo = Get-Process notepad -ErrorAction SilentlyContinue

while ($processo) {
Write-Host "Notepad ainda esta rodando..."
Start-Sleep -Seconds 2
$processo = Get-Process notepad -ErrorAction SilentlyContinue

}

Write-Host "Notepad foi fechado"

Exemplo 3: Processar até entrada especifica

$continuar = $true

while ($continuar) {

$resposta = Read-Host "Digite 'sair' para terminar"
if ($resposta -eq "sair") {

$continuar = $false

}else{

Write-Host "Vocé digitou: $resposta”

Exemplo 4: Tentativas com limite
$tentativas =0

$maxTentativas =3

$sucesso = $false

while (($tentativas -lt $maxTentativas) -and (-not $sucesso)) {
$tentativas++

Write-Host "Tentativa $tentativas de $maxTentativas"

Simulacao de operacéao
$resultado = Get-Random -Minimum 1 -Maximum 10
if ($resultado -gt 5) {
$sucesso = $true
Write-Host "Sucesso!"
}else{

Write-Host "Falha. Tentando novamente..."

if (-not $sucesso) {

Write-Host "Todas as tentativas falharam"”

Exemplo 5: Processar fila

$fila=1..10

while ($fila.Count -gt 0) {
$item = $fila[0]
Write-Host "Processando item: $item"
$fila = $fila[1..($fila.Count-1)]

Start-Sleep -Milliseconds 500

Exemplo 6: Monitoramento
$limite = 80

$uso = (Get-Counter '\Processor(_Total)\% Processor
Time').CounterSamples.CookedValue

while ($uso -1t $limite) {
Write-Host "Uso de CPU: $([math]::Round($uso,2))% (Limite: $limite%)"
Start-Sleep -Seconds 5

$uso = (Get-Counter '\Processor(_Total)\% Processor
Time').CounterSamples.CookedValue

}
Write-Host "ALERTA: CPU acima do limite!"
Do-While e Do-Until
Executam o bloco pelo menos uma vez antes de verificar a condigcéao.
Sintaxe:
Do-While: repete enquanto condicao for verdadeira
do{
cddigo

} while (condicéo)

Do-Until: repete até condicao ser verdadeira
do{
codigo
} until (condicéo)
Exemplos praticos:
Exemplo 1: Do-While basico

$numero =0

do{
Write-Host "Numero: $numero”
$numero++

}while ($numero -1t 5)

Exemplo 2: Do-Until basico

$contador=0

do{
Write-Host "Tentativa: $contador”
$contador++

}until ($contador -eq 5)

Exemplo 3: Menu interativo com Do-While
do{
Write-Host " n===== MENU ====="
Write-Host "1. Opcéo 1"
Write-Host "2. Opgéo 2"
Write-Host "3. Sair"

$opcao = Read-Host "Escolha uma opgéao"

switch ($opcao) {
"1" { Write-Host "Opg¢éo 1 selecionada" }
"2" { Write-Host "Opc¢éo 2 selecionada"}
"3" { Write-Host "Saindo..." }

default { Write-Host "Opcéao invalida" }

}while ($opcao -ne "3")

Exemplo 4: Validacéo de entrada

do{
$idade = Read-Host "Digite sua idade (18-100)"
$idadeNum = [int]$idade

}while (($idadeNum -It 18) -or ($idadeNum -gt 100))

Write-Host "ldade valida: $idadeNum"

Exemplo 5: Repetir até sucesso
$tentativa=0
do{
$tentativa++
Write-Host "Tentando conectar... (Tentativa $tentativa)"
$conexao = Test-Connection "8.8.8.8" -Count 1 -Quiet
if (-not $conexao) {
Start-Sleep -Seconds 2

}

}until ($conexao)

Write-Host "Conexéao estabelecida!"

Exemplo 6: Processar até lista vazia

$tarefas = @("Tarefa 1", "Tarefa 2", "Tarefa 3")

do{

$tarefaAtual = $tarefas[0]

Write-Host "Executando: $tarefaAtual”
$tarefas = $tarefas[1..($tarefas.Count-1)]

}while ($tarefas.Count -gt 0)

Write-Host "Todas as tarefas concluidas!"
Break e Continue
Controlam o fluxo dentro dos loops.
Break: Sai completamente do loop
Exemplo 1: Break simples
for ($i=1; $i-le 10; $i++){

if ($i-eq 5) {

break
}
Write-Host $i

}
#Saida: 1,2, 3, 4

Exemplo 2: Break em While
$contador=0
while ($true) {

$contador++

Write-Host "Iteracéo: $contador"

if ($contador -eq 3) {
Write-Host "Atingiu o limite, saindo..."

break

Exemplo 3: Break com label (loops aninhados)
:exterior for ($i = 1; $i -le 3; $i++) {
for ($j = 1; $j -le 3; $j++){
Write-Host "i=$i, j=$;j"
if ($i-eq 2 -and $j-eq 2){

break exterior # Sai de ambos os loops

Exemplo 4: Buscar e parar quando encontrar
$numeros =1..100

$alvo =42

foreach ($num in $numeros) {
Write-Host "Verificando: $num"
if (fnum -eq $alvo) {
Write-Host "Encontrado: $alvo"

break

}

Continue: Pula para préxima iteragao
Exemplo 1: Continue simples
for ($i=1; $i-le 10; $i++){

if ($i % 2 -eq 0){

continue # Pula numeros pares

Write-Host $i

}
#Saida: 1,3,5,7, 9

Exemplo 2: Continue em ForEach

$arquivos = Get-Childltem -Path C:\Temp

foreach ($arquivo in $arquivos) {
if ($arquivo.Extension -ne "txt") {
continue # Pula se ngo for .txt

}

Write-Host "Processando: $($arquivo.Name)"

Exemplo 3: Continue com validacédo

$numeros = 1, "texto", 3, $null, 5, "erro", 7

foreach ($item in $numeros) {
if ($item -isnot [int]) {
Write-Host "Pulando item invalido: $item"
continue
}
$resultado = $item * 2

Write-Host "$item x 2 = $resultado”

Exemplo 4: Continue com multiplas condi¢cées

$funcionarios = @(

@{Nome="Jo4ao"; Idade=25; Ativo=$true}
@{Nome="Maria"; Idade=17; Ativo=$true}
@{Nome="Pedro"; Idade=30; Ativo=$false}

@{Nome="Ana"; Idade=28; Ativo=$true}

foreach ($func in $funcionarios) {

if ($func.ldade -1t 18) {
Write-Host "Pulando $($func.Nome) - Menor de idade"
continue

}

if (-not $func.Ativo) {
Write-Host "Pulando $($func.Nome) - Inativo"
continue

}

Write-Host "Processando funcionario: $($func.Nome)"

}

Comparacao entre Loops

Loop Quando usar Vantagens
for Numero conhecido de iteragdes Controle preciso do contador
foreach Percorrer colecoes Sintaxe simples, mais legivel

while Condicao pode ser falsa desde inicio Pode nao executar nenhuma vez
do-while Deve executar pelo menos umavez Garantia de execugdao minima

do-until Ldgica inversa do while Mais intuitivo em alguns casos

Conclusao da Secao 2

Nesta secéo, exploramos em profundidade os fundamentos da sintaxe
PowerShell:

1. Cmdlets: Estrutura Verbo-Substantivo, parametros e descoberta de
comandos

2. Pipeline: O coragao do PowerShell, passando objetos entre comandos
3. Variaveis e Operadores: Tipos de dados, escopos e operagdes

4. Estruturas Condicionais: If, Switch e operador ternario

5. Estruturas de Repetigao: For, ForEach, While, Do-While/Until

6. Controle de Fluxo: Break e Continue

Com esses conceitos dominados, vocé tem a base necessaria para escrever

scripts PowerShell eficientes e resolver problemas complexos de automacao.
3. MANIPULAGAO DE OBJETOS E DADOS

3.1 Objetos, Propriedades e Métodos

3.1.1 Paradigma Orientado a Objetos no PowerShell

O que sao Objetos?

No PowerShell, tudo € um objeto. Esta é a diferenca fundamental entre
PowerShell e shells tradicionais como Bash ou CMD, que trabalham com texto
puro.

Conceito:

Um objeto é uma estrutura de dados que combina:
e Propriedades: Caracteristicas ou atributos do objeto (dados)
e Meétodos: Acdes que o objeto pode executar (comportamentos)
e Tipo: Classificagcao do objeto na hierarquia .NET

Analogia do mundo real:

Objeto: Carro

— Propriedades (caracteristicas)
| F— Marca: "Toyota"

| F—Modelo: "Corolla”

| F— Ano: 2024
| F—Cor: "Prata"

| L Velocidade: 0

L Métodos (acoes)
F— Ligar()
— Desligar()

F— Acelerar()

L Frear()
Exemplo pratico no PowerShell:
Obter um processo (objeto)

$processo = Get-Process -Name powershell | Select-Object -First 1

O processo é um objeto com propriedades e métodos
Write-Host "Tipo do objeto: $($processo.GetType().FullName)"

System.Diagnostics.Process

Acessar propriedades (dados)
Write-Host "Nome: $($processo.ProcessName)"
Write-Host "ID: $($processo.ld)"

Write-Host "Memoaria: $($processo.WorkingSet / TMB) MB"

Chamar métodos (acoes)

$processo.Kill() # Encerra o processo

$processo.Refresh() # Atualiza os dados
Diferenca entre Texto e Objetos

Shells tradicionais (texto):

Linux/Bash - retorna TEXTO
$ ps aux | grep firefox

user 12345 2.5 3.2 /usr/bin/firefox

Para extrair o PID, é necessario parsing de texto
$ ps aux | grep firefox | awk '{print $2}'
PowerShell (objetos):

PowerShell - retorna OBJETOS

Get-Process -Name firefox

Acesso direto a propriedade, sem parsing
$firefox = Get-Process -Name firefox

$firefox.Id # Acesso direto ao PID como nimero

Operacbes matematicas diretas
$firefox.WorkingSet/ 1MB # Memdria em MB

Vantagens dos objetos:

. Acesso direto a propriedades

. Tipos de dados preservados

. Sem necessidade de parsing de texto

. IntelliSense e autocompletar

. Validacao de tipos em tempo de execugéo

. Métodos disponiveis para manipulagao
3.1.2 Explorando Objetos com Get-Member

O cmdlet Get-Member ¢é essencial para descobrir propriedades e métodos de
objetos.

Sintaxe e Uso Basico

Sintaxe

Get-Command | Get-Member

objeto | Get-Member [pardmetros]

Ver todos os membros de um objeto

Get-Process | Get-Member

Filtrar por tipo de membro
Get-Process | Get-Member -MemberType Property
Get-Process | Get-Member -MemberType Method

Get-Process | Get-Member -MemberType Event

Buscar membro especifico

Get-Process | Get-Member -Name *Memory*

Ver membros estaticos

Get-Process | Get-Member -Static

Tipos de Membros

1. Properties (Propriedades)

Armazenam dados/caracteristicas do objeto:

$processo = Get-Process | Select-Object -First 1

Ver todas as propriedades

$processo | Get-Member -MemberType Property

Propriedades comuns de Process:
$processo.ld #Int32 - ID do processo
$processo.ProcessName # String - Nome do processo

$processo.StartTime # DateTime - Hora de inicio

$processo.CPU # Double - Tempo de CPU
$processo.WorkingSet # Int64 - Memdiria fisica
$processo.Threads # ProcessThreadCollection - Threads
$processo.Handles # Int32 - Numero de handles

Tipos de propriedades:

Properties (leitura e escrita)

$processo.PriorityClass = 'High'

Nota: Muitas propriedades sdo read-only

$processo.ld =999 # X Erro - somente leitura
2. Methods (Métodos)
Executam acgdes ou retornam valores calculados:

$processo = Get-Process -Name notepad | Select-Object -First 1

Ver todos os métodos

$processo | Get-Member -MemberType Method

Métodos comuns de Process:

$processo.Kill() # Encerra o processo
$processo.CloseMainWindow() # Fecha janela principal
$processo.Refresh() # Atualiza dados do objeto
$processo.WaitForExit() # Aguarda encerramento

$processo.ToString() # Converte para string

Métodos podem ter pardmetros
$processo.WaitForExit(5000) # Aguarda até 5 segundos
Diferenca entre propriedade e método:

Propriedade - acesso direto, sem parénteses

$processo.ProcessName

Método - execugdo de cddigo, COM parénteses
$processo.ToString()

$processo.GetType()

Erro comum: esquecer parénteses em método
$processo.ToString # X Retorna informacgdes do método, ndo executa

$processo.ToString() # L4 Executa o método

3. Script Properties

Propriedades calculadas dinamicamente:
$arquivo = Get-Childltem | Select-Object -First 1

$arquivo | Get-Member -MemberType ScriptProperty

Exemplos de ScriptProperties:

$arquivo.PSChildName # Nome do item
$arquivo.PSDrive # Drive onde estg localizado
$arquivo.PSlIsContainer # E um diretério?
$arquivo.PSPath # Caminho completo do provider

4. Nota Properties

Propriedades adicionadas dinamicamente por cmdlets:
Algumas propriedades sédo adicionadas por formatacao
Get-Process | Format-Table | Get-Member -MemberType NoteProperty
5. Alias Properties

Nomes alternativos para propriedades existentes:
$arquivo = Get-Childltem | Select-Object -First 1

$arquivo | Get-Member -MemberType AliasProperty

Exemplo: 'Name'pode ser um alias para 'PSChildName'’
6. Events (Eventos)

Notificacdes que objetos podem disparar:

$processo = Get-Process | Select-Object -First 1

$processo | Get-Member -MemberType Event

Eventos comuns de Process:

- Exited: Disparado quando processo termina

- Disposed: Disparado quando objeto é liberado
Anatomia Completa de um Objeto

Criar um objeto para anéalise

$arquivo = Get-Childltem C:\Windows\notepad.exe

1. Ver o tipo do objeto
$arquivo.GetType()

Retorna: System.IO.Filelnfo

2. Ver hierarquia de heranca
$arquivo.GetType().BaseType

FileSystemlinfo -> MarshalByRefObject -> Object

3. Ver todos os membros

$arquivo | Get-Member

#4. Propriedades mais comuns
$arquivo.Name # Nome do arquivo
$arquivo.FullName # Caminho completo

$arquivo.Length # Tamanho em bytes

$arquivo.Extension # Extens&o (.exe)
$arquivo.Directory # Objeto Directorylnfo
$arquivo.CreationTime # Data de criagdo
$arquivo.LastWriteTime # Ultima modificacdo

$arquivo.Attributes # Atributos (Hidden, ReadOnly, etc)

#5. Métodos mais comuns

$arquivo.Delete() # Exclui o arquivo
$arquivo.MoveTo($destino) # Move o arquivo
$arquivo.CopyTo($destino) # Copia o arquivo
$arquivo.Refresh() # Atualiza informacobes
$arquivo.ToString() # Converte para string

$arquivo.GetHashCode() # Retorna hash code

6. Métodos de extensdo do PowerShell

$arquivo | Get-Content # Lé conteddo (arquivo texto)
$arquivo | Remove-ltem # Remove o arquivo

3.1.3 Acessando Propriedades e Métodos

Notacao de Ponto (Dot Notation)

Sintaxe: objeto.propriedade ou objeto.método()

Acessar propriedade
$processo = Get-Process | Select-Object -First 1
$nome = $processo.ProcessName

$memoria = $processo.WorkingSet

Chamar método

$tipo = $processo.GetType()

$texto = $processo.ToString()

Encadear (chaining)
$processo.StartTime.ToString("dd/MM/yyyy HH:mm:ss")
$arquivo.Directory.FullName

$texto.ToUpper().Substring(0, 5)

Acessar propriedade de propriedade
$processo.Threads.Count
$processo.MainModule.FileName
Propriedades Aninhadas

Objetos podem conter outros objetos

$servico = Get-Service | Select-Object -First 1

Propriedade simples

$servico.Name

Propriedade que é um objeto

$servico.ServicesDependedOn # Array de objetos ServiceController

Acessar propriedade do objeto aninhado

$servico.ServicesDependedOn[0].Name

Percorrer colegcdo aninhada
$servico.ServicesDependedOn | ForEach-Object {
Write-Host "Dependéncia: $($_.Name)"

}

Operador de Acesso de Membro (Member Access Operator)

Quando o nome da propriedade esta em uma variavel
$propriedade = "ProcessName"

$processo = Get-Process | Select-Object -First 1

Nao funciona:

$processo.$propriedade # X Tenta acessar literal "$propriedade

Funciona:
$processo.$propriedade # £ Em alguns casos funciona

$processo.($propriedade) # L7 Sintaxe explicita, sempre funciona

Exemplo pratico
$propriedades = "Name", "Id", "CPU"

$processo = Get-Process | Select-Object -First 1

foreach ($prop in $propriedades) {
$valor = $processo.($prop)
Write-Host "$prop : $valor"

}

Métodos com Parametros

Métodos podem aceitar para@metros

Método sem pardmetros
$texto = "PowerShell"

$texto.ToUpper() # "POWERSHELL"

Método com um pardmetro

$texto.Substring(5) # "Shell"

Método com multiplos pardmetros

$texto.Substring(0, 5) # "Power"

Método com pardmetros nomeados (.NET style)

$arquivo.CopyTo("C:\destino\arquivo.txt", $true) # $true = sobrescrever

Descobrir assinatura de método

$texto | Get-Member -Name Substring

Mostrara todas as sobrecargas (overloads)
Métodos Estaticos

Métodos que pertencem a classe, nao a instancia:

Sintaxe: [Tipo]::Método()

Exemplos comuns

[Math]::Round(3.14159,2) #3.14

[Math]::Sqrt(16) #4
[Math]::Max(10, 20) #20
[Math]::Min(10, 20) #10
[Math]::Abs(-42) #42
[Math]::Pow(2, 8) #256

[String]::IsNullOrEmpty($texto) # True/False

[String]::Join(", ", $array) # Une array em string

[DateTime]::Now # Data/hora atual
[DateTime]::Today # Data atual (00:00:00)

[DateTime]::ParseExact($string, $formato, $cultura)

[System.|O.Path]::GetFileName($caminho)
[System.|O.Path]::GetExtension($caminho)

[System.|O.Path]::Combine($parte1, $parte2)

[System.Environment]::MachineName # Nome do computador
[System.Environment]::UserName # Nome do usuario

[System.Environment]::OSVersion # Versdo do SO

Listar métodos estaticos
[Math] | Get-Member -Static
[DateTime] | Get-Member -Static
3.1.4 Criando Objetos Customizados
PSCustomObject (Recomendado)
A forma moderna e recomendada de criar objetos:
Sintaxe basica
$objeto = [PSCustomObject]@{
Propriedade1 = Valor1

Propriedade2 = Valor2

Exemplo 1: Objeto simples
$pessoa = [PSCustomObject]@{
Nome = "Jodo Silva"
Idade = 30
Cidade = "Sao Paulo"

Ativo = $true

Acessar propriedades
$pessoa.Nome # "Jogo Silva"

$pessoa.ldade # 30

Modificar propriedades

$pessoa.ldade = 31

Exibir
$pessoa | Format-Table

$pessoa | Format-List

Exemplo 2: Mdltiplos objetos
$funcionarios = @(
[PSCustomObject]@{
Nome ="Maria"
Cargo ="Gerente"
Salario = 8000
b
[PSCustomObject]@{
Nome = "Pedro"
Cargo = "Analista"
Salario = 5000
b
[PSCustomObject]@{
Nome ="Ana"
Cargo = "Desenvolvedor"

Salario = 6000

Manipular colecdo
$funcionarios | Where-Object Salario -gt 5500
$funcionarios | Sort-Object Salario -Descending

$funcionarios | Select-Object Nome, Cargo

Exemplo 3: Objeto com propriedades calculadas
$servidor = [PSCustomObject]@{
Nome = $env:COMPUTERNAME
SO = [System.Environment]::OSVersion.VersionString
CPU = (Get-CimInstance Win32_Processor).Name

MemoriaGB =[math]::Round((Get-Ciminstance
Win32_ComputerSystem).TotalPhysicalMemory / 1GB, 2)

DataConsulta = Get-Date

$servidor | Format-List

New-Object (Legado)

Forma antiga, menos eficiente:

Criar objeto COM

$shell = New-Object -ComObject WScript.Shell

$shell.Popup("Mensagem de teste")

Criar objeto .NET
$lista = New-Object System.Collections.ArrayList

$lista.Add("ltem 1")

$lista.Add("Item 2")

Criar PSObject (forma antiga)
$objeto = New-Object PSObject -Property @{
Nome = "Teste"

Valor =100

4 Nota: Prefira [PSCustomObject] em cddigo novo
Adicionando Propriedades a Objetos Existentes

Add-Member: adiciona propriedades/métodos dinamicamente

Exemplo 1: Adicionar propriedade simples
$processo = Get-Process | Select-Object -First 1

$processo | Add-Member -MemberType NoteProperty -Name "Categoria" -Value
"Sistema"

$processo.Categoria # "Sistema”

Exemplo 2: Adicionar propriedade calculada

$arquivo = Get-Childltem | Select-Object -First 1

$arquivo | Add-Member -MemberType ScriptProperty -Name "TamanhoMB" -Value {
[math]::Round($this.Length / 1MB, 2)

}

$arquivo.TamanhoMB

Exemplo 3: Adicionar método
$objeto = [PSCustomObject]@{Nome = "Teste"}

$objeto | Add-Member -MemberType ScriptMethod -Name "Saudar" -Value {

"Ol4, $($this.Nome)!"

}

$objeto.Saudar() # "Ola, Teste!"

Exemplo 4: Adicionar alias

$pessoa = [PSCustomObject]@{
PrimeiroNome = "Jo&o"
Sobrenome = "Silva"

}

$pessoa | Add-Member -MemberType AliasProperty -Name "Nome" -Value
"PrimeiroNome"

$pessoa.Nome # "Jodo"

Exemplo 5: Enriquecer objetos em pipeline
Get-Process | Select-Object -First 3 | ForEach-Obiject {

$_| Add-Member -MemberType NoteProperty -Name "MemoriaMB" -Value
(Imath]::Round($_.WorkingSet / 1MB, 2))

$_
} | Format-Table Name, Id, MemoriaMB
Select-Object para Criar Objetos

Select-Object pode criar objetos com propriedades especificas

Exemplo 1: Selecionar propriedades existentes

Get-Process | Select-Object Name, Id, CPU

Exemplo 2: Propriedades calculadas
Get-Process | Select-Object Name,
@{Name='CPUTime'; Expression={$_.CPU}},

@{Name='"MemoryMB'; Expression={[math]::Round($_.WorkingSet/ 1MB, 2)}}

Exemplo 3: Mdltiplas propriedades calculadas

Get-Childltem | Select-Object Name,
@{N='SizeMB'; E={{0:N2}' -f ($_.Length / 1MB)}},
@{N='Modified'; E={$_.LastWriteTime.ToString('dd/MM/yyyy")}},

@{N="IsLarge'; E={$_.Length -gt 1MB}}

Exemplo 4: Criar objeto completamente novo
$dados = Get-Process | Select-Object @]
Name ='Resumo’

Expression = {"$($_.Name) - PID: $($_.1d)"}

Exemplo 5: Combinar com Group-Object
Get-Service | Group-Object Status | Select-Object @{
Name = 'Status'
Expression ={$_.Name}
1 ©f
Name ="'Quantidade'
Expression = {$_.Count}
1 ©f
Name = 'Servicos'
Expression = {$_.Group.Name -join ', '}
}
3.1.5 Trabalhando com Colecoes
Arrays
Criar arrays

$numeros=1,2,3,4,5

$nomes = @("Joao", "Maria", "Pedro")
$vazio = @()

$range =1..10

Acessar elementos

$numeros[0] # Primeiro elemento (1)
$numeros[-1] # Ultimo elemento (5)
$numeros[1..3] #Elementos 1,2, 3

$numeros[-3..-1] # Ultimos 3 elementos

Propriedades
$numeros.Count # Numero de elementos

$numeros.Length # Mesmo que Count

Arrays sdo imutaveis (tamanho fixo)

$numeros +=6 # Cria um NOVO array

Iterar
foreach ($num in $numeros) {

Write-Host $num

Métodos

$nomes.Contains("Jodo") # True
[Array]::IndexOf($nomes, "Maria") # 1
[Array]::Reverse($numeros)
[Array]::Sort($nomes)

ArrayList (Colecao Dinamica)

Criar ArrayList (mutavel)

$lista = New-Object System.Collections.ArrayList

Adicionar elementos
$lista.Add("ltem 1")
$lista.Add("ltem 2")

$lista.Add("ltem 3")

Ou usando casting
$lista = [System.Collections.ArrayList]@()

[void]$lista.Add("Item 1") # [void] suprime saida do indice

Inserir em posicao

$lista.Insert(1, "ltem 1.5")

Remover
$lista.Remove("ltem 2") # Remove por valor
$lista.RemoveAt(0) # Remove por indice

$lista.Clear() # Remove todos

Propriedades e métodos
$lista.Count
$lista.Contains("ltem 1")
$lista.IndexOf("Item 3")
Hashtables

Criar hashtable

$config = @]

Servidor="192.168.1.100"

Porta = 8080
SSL = $true

Timeout =30

Acessar valores
$config["Servidor"]

$config.Servidor # Sintaxe alternativa

Adicionar/modificar
$config["Usuario"] = "admin"

$config.Senha = "senha123"

Remover

$config.Remove("Senha")

Verificar existéncia
$config.ContainsKey("Servidor") # True

$config.ContainsValue(8080) # True

Iterar
foreach ($item in $config.GetEnumerator()) {

Write-Host "$($item.Key) = $($item Value)"

Propriedades e métodos
$config.Keys # Colecéo de chaves

$config.Values # Colecdo de valores

$config.Count # Numero de itens

Hashtable ordenada

$ordenado = [ordered]@{

Primeiro =1

Segundo =2

Terceiro =3
}

Generic Lists (Colegoes Tipadas)

List<T> - colecdo tipada e performatica

Criar lista de strings
$nomes =[System.Collections.Generic.List[string]]::new()
$nomes.Add("Jodo")

$nomes.Add("Maria")

Criar lista de inteiros
$numeros = [System.Collections.Generic.List[int]]::new()
$numeros.Add(10)

$numeros.Add(20)

Criar lista de objetos customizados
$pessoas = [System.Collections.Generic.List{PSCustomObject]]::new()
$pessoas.Add([PSCustomObject]@{Nome="Jodo"; Idade=30})

$pessoas.Add([PSCustomObject]@{Nome="Maria"; Idade=25})

Métodos disponiveis

$nomes.Contains("Joao")

$nomes.IndexOf("Maria")
$nomes.Remove("Jo&do")
$nomes.Clear()

$nomes.Sort()

Vantagens: tipagem forte, performance, IntelliSense
3.1.6 Conversao e Comparacgao de Objetos

Type Casting (Conversao de Tipos)

Conversao explicita

$texto ="42"

$numero =[int]$texto #42 (Int32)

$numeroDecimal ="3.14"

$double = [double]$numeroDecimal # 3.74

$dataTexto = "2025-10-15"

$data = [datetime]$dataTexto

Conversbes comuns

[string]123 #"123"
[int]"456" #456
[bool]1 # True
[bool]0 # False
[char]65 #A

Conversdo com validacao

try {

$valor =[int]"abc" # Lancga excecédo

}

catch{

Write-Host "Converséo invalida"

Operador -as (conversao segura)
$resultado = "abc" -as [int] # $null se falhar (ndo langa excegéo)
if ($resultado -eq $null) {
Write-Host "Converséao falhou"
}
Verificacao de Tipo
Operador -is
$numero = 42
$numero -is [int] #True

$numero -is [string] # False

$processo = Get-Process | Select-Object -First 1

$processo -is [System.Diagnostics.Process] # True

Operador -isnot
$texto = "PowerShell"

$texto -isnot [int] #True

GetType()

$objeto = Get-Date

$objeto.GetType() # System.DateTime
$objeto.GetType().FullName # Nome completo do tipo

$objeto.GetType().BaseType # Tipo base

Verificar em estruturas condicionais

if ($variavel -is [array]) {
Write-Host "E um array"

}

elseif ($variavel -is [hashtable]) {
Write-Host "E uma hashtable"

}

Compare-Object

Comparar dois conjuntos de objetos

Exemplo 1: Comparar arrays simples
$lista1 = llAll’ IIBII, IICII’ IIDII

$list82 = "B", IICII’ "D", IIEII

Compare-Object -ReferenceObiject $listal -DifferenceObject $lista2
Mostra diferencas:
<= (s6 em Reference)

=> (s6 em Difference)

Exemplo 2: Incluir itens iguais
Compare-Object $lista1 $lista2 -IncludeEqual

#==(em ambos)

Exemplo 3: Comparar processos
$antes = Get-Process
Start-Process notepad

$depois = Get-Process

Compare-Object $antes $depois -Property Name

Exemplo 4: Comparar arquivos
$origem = Get-Childltem C:\Origem

$destino = Get-Childltem C:\Destino

Compare-Object $origem $destino -Property Name, Length

Exemplo 5: Apenas mostrar diferengas

$dif = Compare-Object $lista1 $lista2 -PassThru
$somenteEm1 = $dif | Where-Object {$_.Sidelndicator -eq '<='}
$somenteEm?2 = $dif | Where-Object {$_.Sidelndicator -eq '=>'}
Where-Object vs .Where()

Where-Object (cmdlet)

Get-Process | Where-Object CPU -gt 10

Get-Process | Where-Object {$_.WorkingSet -gt 100MB}

.Where() (método de array - PS 4.0+)
$processos = Get-Process

$processos.Where({$_.CPU -gt 10})

Diferencas:
- .Where() é mais rapido para grandes colegbes
- .Where() ndo funciona no pipeline direto

- .Where() tem opgébes adicionais

Opcées do .Where()

$numeros =1..10

Default: retorna todos que atendem condicéo

$numeros.Where({$_ -gt 5})

First: retorna primeiro que atende

$numeros.Where({$_ -gt 5}, 'First')

First N: retorna primeiros N que atendem

$numeros.Where({$_ -gt 5}, 'First’, 3)

Last: retorna ultimo que atende

$numeros.Where({$_ -gt 5}, 'Last’)

SkipUntil: pula até encontrar

$numeros.Where({$_ -gt 5}, 'SkipUntil')

Until: retorna até encontrar

$numeros.Where({$_ -gt 5}, 'Until’)

Split: separa em dois grupos

$resultado = $numeros.Where({$_ -gt 5}, 'Split')
$maiores = $resultado[0]

$menores = $resultado[1]

3.1.7 Exemplos Praticos Avancados
Exemplo 1: Relatério de Processos

Criar relatdrio detalhado de processos

$relatorio = Get-Process | Where-Object {$_.WorkingSet -gt 50MB} | ForEach-
Object{

[PSCustomObject]@{
Processo =$_.ProcessName
PID=$_.Id
'Memaria (MB)' = [math]::Round($_.WorkingSet / 1MB, 2)
'CPU (s)' = [math]::Round($_.CPU, 2)
Threads = $_Threads.Count
'"Tempo Execugao' = if ($_.StartTime) {

(Get-Date) - $_.StartTime | Select-Object -ExpandProperty TotalHours |
ForEach-Object {{math]::Round($_, 2)}

}else{
"N/A"
}
Empresa = $_.Company

Caminho =$_.Path

Exibir ordenado por mem©ria

$relatorio | Sort-Object 'Memodria (MB)' -Descending | Format-Table -AutoSize

Exportar para CSV

$relatorio | Export-Csv "processos_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv" -NoTypelnformation

Exemplo 2: Inventario de Sistema
Coletar informacées detalhadas do sistema
$inventario = [PSCustomObject]@{

Informacbes do computador

NomeComputador = $env:COMPUTERNAME
Usuario = $env:USERNAME

DataColeta = Get-Date

Sistema Operacional
SO = (Get-Cimlnstance Win32_OperatingSystem).Caption
Versao = [System.Environment]::OSVersion.Version.ToString()

Arquitetura = (Get-Cimlnstance Win32_OperatingSystem).OSArchitecture

Hardware
Processador = (Get-CimInstance Win32_Processor).Name
NucleosFisicos = (Get-Cimlnstance Win32_Processor).NumberOfCores

NucleoslLogicos = (Get-Cimlnstance
Win32_Processor).NumberOfLogicalProcessors

Memoria

MemoriaTotalGB = [math]::Round((Get-CimInstance
Win32_ComputerSystem).TotalPhysicalMemory / 1GB, 2)

MemoriaLivreGB = [math]::Round((Get-Cimlnstance
Win32_OperatingSystem).FreePhysicalMemory/ 1MB, 2)

Disco

Discos = (Get-Cimlnstance Win32_LogicalDisk -Filter "DriveType=3") | ForEach-
Object{

[PSCustomObject]@{
Letra=$_.DevicelD
TamanhoGB =[math]::Round($_.Size / 1GB, 2)
LivreGB =[math]::Round($_.FreeSpace / 1GB, 2)

PercentualLivre = [math]::Round(($_.FreeSpace / $_.Size) * 100, 2)

Rede
Adaptadores = (Get-NetAdapter | Where-Object Status -eq 'Up').Name -join ',

EnderecolP = (Get-NetlPAddress -AddressFamily IPv4 | Where-Object
{$_.InterfaceAlias -notlike '"*Loopback*'}).IPAddress -join ', '

}

Exibir

$inventario | Format-List
$inventario.Discos | Format-Table -AutoSize
Exemplo 3: Monitoramento de Servigos

Monitorar servigcos criticos

$servicosCriticos = "wuauserv", "BITS", "Spooler", "W32Time", "WinRM"

$status = foreach ($servico in $servicosCriticos) {

$svc = Get-Service -Name $servico -ErrorAction SilentlyContinue

[PSCustomObject]@{
Servico = $servico
DisplayName = if ($svc) { $svc.DisplayName } else { "N&o encontrado" }
Status = if ($svc) { $svc.Status }else { "N/A" }
Tipolnicio = if ($svc) { $svc.StartType }else { "N/A" }

Alerta = if ($svc -and $svc.Status -ne 'Running') {" 4. ATENCAO" }else{"
OK"}

DataVerificacao = Get-Date -Format "dd/MM/yyyy HH:mm:ss"

Exibir com cores
$status | ForEach-Object{
$cor =if ($_.Alerta -like "*ATENCAO*") { 'Red' } else { 'Green'}

Write-Host "$($_.Servico) - $($_.Status)" -ForegroundColor $cor

Salvar log

$status | Export-Csv "status_servicos.csv" -NoTypelnformation -Append
3.2 Importacao/Exportacao de Dados

3.2.1 Trabalhando com CSV (Comma-Separated Values)

Export-Csv - Exportando para CSV

Sintaxe basica

objeto | Export-Csv -Path caminho.csv

Exemplo 1: Exportar processos

Get-Process | Export-Csv processos.csv

Problema: inclui informacéo de tipo
Solucéo: usar -NoTypelnformation

Get-Process | Export-Csv processos.csv -NoTypelnformation

Exemplo 2: Especificar delimitador

Get-Process | Export-Csv processos.csv -Delimiter ';' -NoTypelnformation

Exemplo 3: Especificar encoding

Get-Service | Export-Csv servicos.csv -Encoding UTF8 -NoTypelnformation

Exemplo 4: Append (adicionar ao arquivo existente)

Get-Process -Name powershell | Export-Csv log.csv -Append -NoTypelnformation

Exemplo 5: Selecionar propriedades especificas
Get-Process | Select-Object Name, Id, CPU, WorkingSet |

Export-Csv processos_simples.csv -NoTypelnformation

Exemplo 6: Com propriedades calculadas

Get-Process | Select-Object Name,
@{N='"MemoryMB'; E={[math]::Round($_.WorkingSet / 1MB, 2)}},
@{N='CPUTime'"; E={[math]::Round($_.CPU, 2)}} |

Export-Csv processos_formatado.csv -NoTypelnformation

Exemplo 7: Exportar objetos customizados

$dados = @(
[PSCustomObject]@{Nome="Jodo"; Idade=30; Cidade="SP"}
[PSCustomObject]@{Nome="Maria"; Idade=25; Cidade="RJ"}
[PSCustomObject]@{Nome="Pedro"; Idade=35; Cidade="MG"}

)

$dados | Export-Csv funcionarios.csv -NoTypelnformation

Import-Csv - Importando de CSV

Sintaxe basica

$dados = Import-Csv -Path caminho.csv

Exemplo 1: Importagcédo basica

$processos = Import-Csv processos.csv

Os dados séo retornados como objetos PSCustomObject

$processos[0].Name

$processos[0].CPU

Exemplo 2: Especificar delimitador

$dados = Import-Csv arquivo.csv -Delimiter ';'

Exemplo 3: Especificar encoding

$dados = Import-Csv arquivo.csv -Encoding UTF8

Exemplo 4: CSV sem cabecalho

$dados = Import-Csv sem_cabecalho.csv -Header "Col1", "Col2", "Col3"

Exemplo 5: Filtrar durante importagcéo

$processosAltoUso = Import-Csv processos.csv | Where-Object {[int]$_.CPU -gt
10}

Exemplo 6: Converter tipos apds importagdo
$funcionarios = Import-Csv funcionarios.csv | ForEach-Object {
[PSCustomObject]@{
Nome =$_.Nome
Idade = [int]$_.ldade # Converter para inteiro
Cidade = $_.Cidade
Ativo = [bool]$_.Ativo # Converter para booleano

Salario = [decimal]$_.Salario # Converter para decimal

Exemplo 7: Processar em lote

Import-Csv usuarios.csv | ForEach-Object {

New-ADUser -Name $_.Nome -GivenName $_.PrimeiroNome -Surname
$_.Sobrenome

}
ConvertTo-Csv e ConvertFrom-Csv

Diferente de Export/Import, estes convertem para/de formato CSV sem salvarem
arquivo:

ConvertTo-Csv: converte objeto para string CSV
$processos = Get-Process | Select-Object -First 3

$csv = $processos | ConvertTo-Csv -NoTypelnformation

$csv é um array de strings

$csv | ForEach-Object { Write-Host $_}

Pode ser util para enviar por rede, email, etc

$csv | Out-File temp.csv

ConvertFrom-Csv: converte string CSV para objetos
$textoCSV = @"

Nome,ldade,Cidade

Jod0,30,S40 Paulo

Maria,25,Rio de Janeiro

Pedro,35,Belo Horizonte

'@

$objetos = $textoCSV | ConvertFrom-Csv

$objetos | Format-Table

Exemplo pratico: ler CSV da web

$url = "https://exemplo.com/dados.csv"
$dados = (Invoke-WebRequest $url).Content | ConvertFrom-Csv
Exemplo Completo: Sistema de Gerenciamento

Sistema simples de cadastro de produtos

Estrutura do CSV

$arquivoCSV = "produtos.csv"

Funcao para adicionar produto
function Add-Produto {
param(
[string]$Codigo,
[string]$Nome,
[decimal]$Preco,

[int]$Estoque

$produto = [PSCustomObject]@{
Codigo = $Codigo
Nome = $Nome
Preco = $Preco
Estoque = $Estoque

DataCadastro = Get-Date -Format "dd/MM/yyyy HH:mm:ss"

$produto | Export-Csv $arquivoCSV -Append -NoTypelnformation

Write-Host "Produto $Nome cadastrado com sucesso!" -ForegroundColor Green

Funcdo para listar produtos
function Get-Produtos {
if (Test-Path $arquivoCSV) {
$produtos = Import-Csv $arquivoCSV
$produtos | ForEach-Object{
[PSCustomObject]@{
Codigo = $_.Codigo
Nome =$_.Nome
Preco =[decimal]$_.Preco
Estoque =[int]$_.Estoque

DataCadastro = $_.DataCadastro

}

}else{

Write-Host "Nenhum produto cadastrado." -ForegroundColor Yellow

Funcédo para buscar produto
function Find-Produto {

param([string]$Codigo)

$produtos = Get-Produtos

$produtos | Where-Object Codigo -eq $Codigo

Funcdo para atualizar estoque

function Update-Estoque {
param(
[string]$Codigo,

[int]$Quantidade

$produtos = Import-Csv $arquivoCSV | ForEach-Object {
if ($_.Codigo -eq $Codigo) {

$_.Estoque =[int]$_.Estoque + $Quantidade

$produtos | Export-Csv $arquivoCSV -NoTypelnformation -Force

Write-Host "Estoque atualizado!" -ForegroundColor Green

Uso

Add-Produto -Codigo "001" -Nome "Mouse" -Preco 45.90 -Estoque 50
Add-Produto -Codigo "002" -Nome "Teclado" -Preco 120.00 -Estoque 30
Get-Produtos | Format-Table -AutoSize

Update-Estoque -Codigo "001" -Quantidade 10

Find-Produto -Codigo "001"

3.2.2 Trabalhando com JSON (JavaScript Object Notation)

JSON é um formato leve e amplamente usado para troca de dados, especialmente
em APIs REST.

ConvertTo-Json - Convertendo para JSON

Sintaxe basica

objeto | ConvertTo-Json

Exemplo 1: Objeto simples
$pessoa = [PSCustomObject]@{
Nome ="Jodo Silva"
Idade = 30

Email = "joao@email.com"

$json = $pessoa | ConvertTo-Json

Write-Host $json

Saida:

#{

"Nome": "Jogo Silva’,

"ldade": 30,

"Email": "joao@email.com”

#}

Exemplo 2: Array de objetos

$funcionarios = @(

[PSCustomObject]@{Nome="Jodo"; Cargo="Gerente"}

[PSCustomObject]@{Nome="Maria"; Cargo="Analista"}

$funcionarios | ConvertTo-Json

Exemplo 3: Profundidade (padrdo é 2 niveis)

$objeto = @]
Nivell = @{
Nivel2 = @{
Nivel3 = @{

Dado ="Profundo"

Com profundidade padrao (2)

$objeto | ConvertTo-Json

Aumentar profundidade

$objeto | ConvertTo-Json -Depth 5

Exemplo 4: Compacto (sem formatacao)

$dados | ConvertTo-Json -Compress

Exemplo 5: Processos para JSON

Get-Process | Select-Object -First 3 Name, Id, CPU | ConvertTo-Json

Exemplo 6: Salvar em arquivo
$config = @]
Servidor="192.168.1.100"
Porta = 8080
SSL = $true

Timeout =30

$config | ConvertTo-Json | Out-File config.json -Encoding UTF8

Exemplo 7: Hashtable aninhada
$configuracao = @]
Aplicacao = @{
Nome ="MeuApp"
Versao ="1.0.0"
}
Banco = @{
Servidor = "localhost"
Porta = 5432
Nome ="meubanco"

}

Recursos = @("Recurso1", "Recurso2", "Recurso3")

$configuracao | ConvertTo-Json -Depth 3 | Out-File app_config.json
ConvertFrom-Json - Convertendo de JSON
Sintaxe basica

$objeto = $jsonString | ConvertFrom-Json
Exemplo 1: Parsing basico
$jsonTexto = '{"Nome":"Jodo""Idade":30,"Cidade":"Séo0 Paulo"}'

$objeto = $jsonTexto | ConvertFrom-Json

$objeto.Nome # "Jodo"

$objeto.Idade # 30

Exemplo 2: Ler de arquivo

$config = Get-Content config.json -Raw | ConvertFrom-Json

$config.Servidor

$config.Porta

Exemplo 3: Array JSON
$jsonArray = [
{"Nome":"Joao","Idade":30},

{"Nome":"Maria","ldade":25}

$pessoas = $jsonArray | ConvertFrom-Json
$pessoas.Count #2

$pessoas[0].Nome # "Jogo"

Exemplo 4: JSON aninhado
$jsonComplexo = @'
{
"Empresa": "TechCorp",
"Funcionarios": [
{
"Nome": "Joao",
"Cargo": "Gerente",
"Contato": {

"Email": "joao@tech.com",

"Telefone": "11-99999-9999"

}
b
{
"Nome": "Maria",
"Cargo": "Analista",
"Contato": {
"Email": "maria@tech.com’,
"Telefone": "11-88888-8888"
}
}
]
}
'@

$dados = $jsonComplexo | ConvertFrom-Json
$dados.Empresa
$dados.Funcionarios[0].Nome

$dados.Funcionarios[0].Contato.Email

Exemplo 5: Consumir APl REST
$url = "https://api.github.com/users/powershell"

$resposta = Invoke-RestMethod -Uri $url # Ja retorna como objeto

Ou manualmente:
$respostalexto = Invoke-WebRequest -Uri $url
$dados = $respostalexto.Content | ConvertFrom-Json

$dados.login

$dados.public_repos

Exemplo 6: Modificar e salvar

$config = Get-Content config.json -Raw | ConvertFrom-Json
$config.Porta = 9090

$config.SSL = $false

$config | ConvertTo-Json | Set-Content config.json

Exemplo 7: Tratar JSON invalido

try {
$jsoninvalido ='{"Nome":"Jodo","Idade":} #JSON malformado
$objeto = $jsonlinvalido | ConvertFrom-Json

}

catch{

Write-Host "Erro ao processar JSON: $($_.Exception.Message)" -
ForegroundColor Red

}
Exemplo Completo: Configuracao de Aplicacao

Sistema de configuracdo usando JSON

$arquivoConfig = "app_settings.json"

Estrutura de configuragdo padrdo
$configPadrao = @{
Aplicacao = @{
Nome = "Sistema de Gestdo"
Versao ="2.0.0"

Ambiente = "Desenvolvimento"

}
Banco = @{

Servidor = "localhost"
Porta = 1433
Nome ="GestaoDb"
Usuario ="sa"
Timeout =30
}
Email = @{
SMTP ="smtp.empresa.com"
Porta = 587
SSL = $true
Remetente = "sistema@empresa.com"
}
Logs = @{
Nivel = "Info"
Caminho ="C:\Logs\Sistema"
TamanhoMaximoMB = 100
RetencaoDias =30
}
Recursos = @(
"Usuarios",
"Relatorios",
"Dashboard",

"Auditoria"

Criar configuragcdo se néo existir
if (-not (Test-Path $arquivoConfig)) {

$configPadrao | ConvertTo-Json -Depth 5 | Out-File $arquivoConfig -Encoding
UTF8

Write-Host "Arquivo de configuragao criado: $arquivoConfig" -ForegroundColor

Green

}

Ler configuracdo
function Get-Configuracao {
if (Test-Path $arquivoConfig) {
Get-Content $arquivoConfig -Raw | ConvertFrom-Json
}else{

Write-Host "Arquivo de configuracdo ndo encontrado!" -ForegroundColor Red

Atualizar configuracédo
function Set-Configuracao {
param(
[string]$Secao,
[string]$Chave,

$Valor

$config = Get-Configuracao
$config.$Secao.$Chave = $Valor

$config | ConvertTo-Json -Depth 5 | Set-Content $arquivoConfig -Encoding UTF8

Write-Host "Configuracgéo atualizada: $Secao.$Chave = $Valor" -

ForegroundColor Green

}

Exibir configuragcédo formatada

function Show-Configuracao {

$config = Get-Configuracao

Write-Host "”

Write-Host "”

Write-Host "

Write-Host "

Write-Host "

Write-Host "”

Write-Host "

Write-Host "

Write-Host "

Write-Host "”

Write-Host "

Write-Host "

Write-Host "

Write-Host "”

Write-Host "

Write-Host "

n=== CONFIGURACAO DO SISTEMA

n[Aplicacao]" -ForegroundColor Yellow
Nome: $($config.Aplicacao.Nome)"
Verséo: $($config.Aplicacao.Versao)"

Ambiente: $($config.Aplicacao.Ambiente)"

n[Banco de Dados]" -ForegroundColor Yellow
Servidor: $($config.Banco.Servidor)"
Porta: $($config.Banco.Porta)"

Database: $($config.Banco.Nome)"

n[Email]" -ForegroundColor Yellow
SMTP: $($config.Email.SMTP)"
Porta: $($config.Email.Porta)"

SSL: $($config.Email.SSL)"

n[Logs]" -ForegroundColor Yellow
Nivel: $($config.Logs.Nivel)"

Caminho: $($config.Logs.Caminho)"

==="-ForegroundColor Cyan

Write-Host "" n[Recursos Habilitados]" -ForegroundColor Yellow

$config.Recursos | ForEach-Object { Write-Host" - $_"}

Validar configuracéao
function Test-Configuracao {
$config = Get-Configuracao

$erros = @()

Validar banco
if (-not (Test-Connection $config.Banco.Servidor -Count 1 -Quiet)) {

$erros +="Servidor de banco inacessivel: $($config.Banco.Servidor)"

Validar caminho de logs
if (-not (Test-Path $config.Logs.Caminho)) {
try {
New-Item -Path $config.Logs.Caminho -ltemType Directory -Force | Out-Null

Write-Host "Diretério de logs criado: $($config.Logs.Caminho)" -
ForegroundColor Green

}

catch{

$erros +="Nao foi possivel criar diretério de logs: $($config.Logs.Caminho)"

if ($erros.Count -eq 0) {

Write-Host "Configuragao valida!" -ForegroundColor Green
return $true
}else{
Write-Host "Erros encontrados na configuracao:" -ForegroundColor Red
$erros | ForEach-Object { Write-Host " - $_" -ForegroundColor Red }

return $false

Uso

Show-Configuracao

Set-Configuracao -Secao "Banco" -Chave "Porta" -Valor 1434
Test-Configuracao

3.2.3 Trabalhando com XML

XML é usado extensivamente no Windows e em configuragdes de aplicagdes.
Export-Clixml e Import-Clixml

Serializagao completa de objetos PowerShell (preserva tipos):

Export-Clixml: serializa objeto para XML

Get-Process | Export-Clixml processos.xml

O arquivo XML contém metadados de tipo completos

Get-Content processos.xml | Select-Object -First 20

Import-Clixml: deserializa de XML

$processos = Import-Clixml processos.xml

Tipos e propriedades sdo preservados

$processos[0].GetType() # System.Diagnostics.Process

$processos[0].CPU # Ainda é um Double

Exemplo pratico: salvar estado
$estadoAntes = Get-Service

$estadoAntes | Export-Clixml servicos_antes.xml

Fazer mudancas...

Stop-Service wuauserv

Comparar depois
$estadoDepois = Get-Service

$estadoAntes = Import-Clixml servicos_antes.xml

Compare-Object $estadoAntes $estadoDepois -Property Name, Status

Exemplo: cache de dados
$dadosAPI = Invoke-RestMethod "https://api.exemplo.com/dados"

$dadosAPI | Export-Clixml cache_api.xml

Ler do cache (sem chamar APl novamente)

$dadosCache = Import-Clixml cache_api.xml

ConvertTo-Xml

Converte objetos para formato XML (néo preserva tipos complexos):
Sintaxe basica

objeto | ConvertTo-Xml

Exemplo 1: Converter processo

$processo = Get-Process | Select-Object -First 1

$xml = $processo | ConvertTo-Xml

$xml.GetType() # System.Xml.XmlDocument

Exemplo 2: Sem declaracdo XML e root

$xml = Get-Service | Select-Object -First 3 | ConvertTo-Xml -NoTypelnformation -As
String

Exemplo 3: Profundidade
$dados = @{
Nivell = @{
Nivel2 = @{

Valor = "Teste"

$xml = $dados | ConvertTo-Xml -Depth 3

Salvar em arquivo
$xml.Save("C:\temp\dados.xml")
Trabalhando com XML Nativo
Criar documento XML
[xml]$xml= @"
<?xmlversion="1.0" encoding="UTF-8"?>
<Empresa>

<Nome>TechCorp</Nome>

<Funcionarios>

<Funcionario id="1">
<Nome>Joao Silva</Nome>
<Cargo>Gerente</Cargo>
<Salario>8000</Salario>

</Funcionario>

<Funcionario id="2">
<Nome>Maria Santos</Nome>
<Cargo>Analista</Cargo>
<Salario>5000</Salario>

</Funcionario>

</Funcionarios>
</Empresa>

'@

Acessar elementos (dot notation)
$xml.Empresa.Nome # "TechCorp"
$xml.Empresa.Funcionarios.Funcionario.Count #2

$xml.Empresa.Funcionarios.Funcionario[0].Nome # "Jogo Silva'

Acessar atributos

$xml.Empresa.Funcionarios.Funcionario[0].id #"1"

Selecionar com XPath
$xml.SelectNodes("//Funcionario[@id="'1']")

$xml.SelectNodes("//Funcionario[Salario>6000]")

Modificar valores

$xml.Empresa.Funcionarios.Funcionario[0].Salario = "8500"

Adicionar novo elemento
$novoFuncionario = $xml.CreateElement("Funcionario")

$novoFuncionario.SetAttribute("id", "3")

$nome = $xml.CreateElement("Nome")
$nome.lnnerText = "Pedro Costa"

$novoFuncionario.AppendChild($nome)

$cargo = $xml.CreateElement("Cargo")
$cargo.lnnerText = "Desenvolvedor"

$novoFuncionario.AppendChild($cargo)

$xml.Empresa.Funcionarios.AppendChild($novoFuncionario)

Salvar arquivo

$xml.Save("C:\temp\empresa.xml")

Ler arquivo XML

[xml]$xmlArquivo = Get-Content "C:\temp\empresa.xml"

Iterar sobre elementos
foreach ($func in $xml.Empresa.Funcionarios.Funcionario) {

Write-Host "$($func.Nome) - $($func.Cargo) - R$ $($func.Salario)"

Remover elemento

$funcionarioRemover = $xml.SelectSingleNode("//Funcionario[@id='2"]")

$funcionarioRemover.ParentNode.RemoveChild($funcionarioRemover)
Exemplo Completo: Gerenciador de Configuragao XML

Sistema de configuragdo em XML

$arquivoXML = "configuracao.xml"

Criar configuragdo padrdo
function New-ConfiguracaoXML {
$xml = [xml]@"
<?xmlversion="1.0" encoding="UTF-8"?>
<Configuracao>
<Aplicacao>
<Nome>Sistema de Gestdo</Nome>
<Versao0>2.0.0</Versao>
<Ambiente>Desenvolvimento</Ambiente>
</Aplicacao>
<Conexoes>
<Banco>
<Servidor>localhost</Servidor>
<Porta>1433</Porta>
<Nome>GestaoDb</Nome>
<Usuario>sa</Usuario>
</Banco>
<Email>
<SMTP>smtp.empresa.com</SMTP>
<Porta>587</Porta>
<SSL>true</SSL>

<Remetente>sistema@empresa.com</Remetente>

</Email>
</Conexoes>
<Logs>
<Nivel>Info</Nivel>
<Caminho>C:\Logs\Sistema</Caminho>
<TamanhoMaximoMB>100</TamanhoMaximoMB>
</Logs>
</Configuracao>
'@
$xml.Save($arquivoXML)

Write-Host "Configuragdo XML criada: $arquivoXML" -ForegroundColor Green

Ler configuracao
function Get-ConfiguracaoXML {
if (Test-Path $arquivoXML) {
[xml](Get-Content $arquivoXML)
}else{
Write-Host "Arquivo ndo encontrado. Criando novo..." -ForegroundColor Yellow
New-ConfiguracaoXML

[xml](Get-Content $arquivoXML)

Obter valor especifico
function Get-ValorConfig {
param(

[string]$XPath

$xml = Get-ConfiguracaoXML

$node = $xml.SelectSingleNode($XPath)

if ($node) {
$node.lnnerText
}else{

Write-Host "Caminho nao encontrado: $XPath" -ForegroundColor Red

Definir valor
function Set-ValorConfig {
param(
[string]$XPath,

[string]$Valor

$xml = Get-ConfiguracaoXML

$node = $xml.SelectSingleNode($XPath)

if ($node) {

$node.InnerText = $Valor

$xml.Save($arquivoXML)

Write-Host "Valor atualizado: $XPath = $Valor" -ForegroundColor Green
}else{

Write-Host "Caminho nao encontrado: $XPath" -ForegroundColor Red

Exibir configuragéo

function Show-

ConfiguracaoXML {

$xml = Get-ConfiguracaoXML

Write-Host "”

Write-Host "”

Write-Host "

n=== CONFIGURAGCAO XML ==="-ForegroundColor Cyan

n[Aplicacao]" -ForegroundColor Yellow

Nome: $($xml.Configuracao.Aplicacao.Nome)"

Write-Host " Verséo: $($xml.Configuracao.Aplicacao.Versao)"

Write-Host " Ambiente: $($xml.Configuracao.Aplicacao.Ambiente)"

Write-Host "*
Write-Host "
Write-Host "

Write-Host "

Write-Host "”

Write-Host "

Write-Host "

Write-Host "

Write-Host "”

Write-Host "

Write-Host "

n[Banco de Dados]" -ForegroundColor Yellow
Servidor: $($xml.Configuracao.Conexoes.Banco.Servidor)"
Porta: $($xml.Configuracao.Conexoes.Banco.Porta)"

Nome: $($xml.Configuracao.Conexoes.Banco.Nome)"

n[Email]" -ForegroundColor Yellow
SMTP: $($xml.Configuracao.Conexoes.Email.SMTP)"
Porta: $($xml.Configuracao.Conexoes.Email.Porta)"

SSL: $($xml.Configuracao.Conexoes.Email.SSL)"

n[Logs]" -ForegroundColor Yellow
Nivel: $($xml.Configuracao.Logs.Nivel)"

Caminho: $($xml.Configuracao.Logs.Caminho)"

Uso

New-ConfiguracaoXML

Show-ConfiguracaoXML

Get-ValorConfig -XPath "//Banco/Servidor"
Set-ValorConfig -XPath "//Banco/Porta" -Valor "1434"
3.2.4 Outros Formatos de Dados

Trabalhando com HTML

ConvertTo-Html: gera relatdrios HTML

$processos = Get-Process | Select-Object -First 10 Name, Id, CPU, WorkingSet

$html = $processos | ConvertTo-Html -Title "Relatdrio de Processos" -PreContent
"<h1>Top 10 Processos</h1>"

$html | Out-File relatorio.html

Com CSS customizado
$css=@"
<style>
body { font-family: Arial, sans-serif; }
h1{color: #2E86AB; }
table { border-collapse: collapse; width: 100%; }
th { background-color: #2E86AB; color: white; padding: 10px; }
td { border: 1px solid #ddd; padding: 8px; }
tr:nth-child(even) { background-color: #f2f2f2; }
</style>

'@

$processos | ConvertTo-Html -Head $css -Title "Relatorio” -PreContent
"<h1>Processos</h1>"|

Out-File relatorio_styled.html

Abrir no browser

Invoke-ltem relatorio_styled.html
Trabalhando com Arquivos de Texto
Get-Content: ler arquivo

$conteudo = Get-Content arquivo.txt

Ler linha por linha

Get-Content arquivo.txt | ForEach-Object {

Write-Host "Linha: $_"

Ler com encoding especifico

Get-Content arquivo.txt -Encoding UTF8

Ler ultimas N linhas

Get-Content log.txt -Tail 10

Ler e monitorar (tail -f)

Get-Content log.txt -Wait -Tail 10

Set-Content: sobrescrever arquivo

"Nova linha" | Set-Content arquivo.txt

Add-Content: adicionar ao arquivo

"Linha adicional" | Add-Content arquivo.txt

Out-File: redirecionar saida
Get-Process | Out-File processos.txt
Trabalhando com Arquivos Binarios
Ler bytes de arquivo

$bytes = [System.lO.File]::ReadAllBytes("C:\arquivo.exe")

Escrever bytes

[System.|O.File]::WriteAllBytes("C:\copia.exe", $bytes)

Calcular hash

$hash = Get-FileHash "C:\arquivo.exe" -Algorithm SHA256

$hash.Hash

Conclusao da Secao 3

Nesta secédo, exploramos profundamente:
1. Objetos no PowerShell: Propriedades, métodos, tipos e como explora-los
2. Get-Member: Ferramenta essencial para descoberta

3. Criacao de objetos customizados: PSCustomObiject e técnicas
avancadas

4. Colegoes: Arrays, ArrayLists, Hashtables e Generic Lists

5. Conversao e comparacao: Type casting e Compare-Object
6. CSV:Importagao, exportacdo e manipulagcao

7. JSON: Trabalho com APIs e configuragdes modernas

8. XML: Manipulacgao nativa e serializagao

Com essas habilidades, vocé pode manipular dados em diversos formatos e criar
solugdes robustas de automacgao e integraco.

4. SCRIPTING E AUTOMAGAO DE TAREFAS
4.1 Criacao de Scripts Simples e Avancados
4.1.1 Fundamentos de Scripts PowerShell
O que é um Script?

Um script é um arquivo contendo uma sequéncia de comandos PowerShell que
podem ser executados como uma unidade. Scripts permitem automatizar tarefas
repetitivas, criar ferramentas reutilizaveis e implementar légica complexa.

Caracteristicas de scripts PowerShell:
e Extensao:.ps1 (PowerShell Script)
e Podem conter cmdlets, funcoes, variaveis e légica
e Suportam parametros de entrada
e Podem ser assinados digitalmente para seguranca
o Executam no contexto do usuario atual
Estrutura Basica de um Script
Cabecalho com informacgdes do script
<#
.SYNOPSIS
Breve descricdo do que o script faz
.DESCRIPTION
Descricdo detalhada do script
.PARAMETER NomeParametro
Descricdo do pard@metro
.EXAMPLE
Exemplo de uso do script
.NOTES
Autor: Seu Nome
Data: 15/10/2025
Versgo: 1.0

#>

Pardmetros do script
param(
[string]$Parametro1,

[int]$Parametro2

Configuracées iniciais

$ErrorActionPreference = "Stop"

Corpo do script

#... codigo aqui ...

Saida/resultado

Write-Output "Script concluido”
Criando Seu Primeiro Script

Exemplo 1: Script simples (Ola Mundo)

Arquivo: OlaMundo.ps1

Exibirmensagem

Write-Host "Ola, Mundo!" -ForegroundColor Green

Obter informacdes do sistema

Write-Host "" nInformacgdes do Sistema:" -ForegroundColor Cyan
Write-Host "Computador: $env:COMPUTERNAME"

Write-Host "Usuario: $env:USERNAME"

Write-Host "Data: $(Get-Date -Format 'dd/MM/yyyy HH:mm:ss')"

Pausar antes de fechar
Read-Host " nPressione Enter para sair"
Executar o script:

Navegar até o diretdrio

cd C:\Scripts

Executar

A\OlaMundo.ps1

Ou com caminho completo
C:\Scripts\OlaMundo.ps1
Exemplo 2: Script com parametros

Arquivo: Saudacao.ps1

param(

[string]$Nome = "Visitante"

$hora = (Get-Date).Hour

if ($hora -1t 12){
$periodo = "Bom dia"

} elseif ($hora -1t 18) {
$periodo = "Boa tarde"

} else {

$periodo = "Boa noite"

Write-Host "$periodo, $Nome!" -ForegroundColor Green

Write-Host "Seja bem-vindo ao PowerShell!" -ForegroundColor Cyan
Executar com parametros:

\Saudacao.ps1

\Saudacao.ps1 -Nome "Joao"

\Saudacao.ps1 -Nome "Maria Silva"

4.1.2 Parametros e Validacao

Declaragao de Parametros

Sintaxe basica

param(

[tipo]$NomeParametro

Parametros com valores padréo
param(
[string]$Servidor = "localhost",
[int]$Porta = 8080,

[bool]$SSL = $true

Pardmetros obrigatdrios
param(
[Parameter(Mandatory=$true)]

[string]$Usuario,

[Parameter(Mandatory=$true)]

[string]$Senha

Pardmetros com multiplos valores
param(
[string[]]$Computadores,

[int[]]$Portas

Parametros posicionais
param(
[Parameter(Position=0, Mandatory=$true)]

[string]$Origem,

[Parameter(Position=1, Mandatory=$true)]
[string]$Destino
)
Atributos de Validacao
ValidateNotNullOrEmpty: ndo permite nulo ou vazio
param(
[Parameter(Mandatory=$true)]
[ValidateNotNullOrEmpty()]

[string]$Nome

ValidateLength: valida tamanho da string
param(
[ValidateLength(3, 50)]

[string]$Usuario

ValidateRange: valida intervalo numérico
param(
[ValidateRange(1, 100)]

[int]$Porcentagem

ValidateSet: valida valores permitidos
param(
[ValidateSet("Desenvolvimento", "Homologagao", "Producgao")]

[string]$Ambiente

ValidatePattern: valida com regex
param(
[ValidatePattern("~\d{3\.\d{3)\.\d{3}-\d{2}$")]

[string]$CPF

ValidateScript: valida com script customizado
param(
[ValidateScript({Test-Path $_})]

[string]$Caminho

ValidateCount: valida quantidade de elementos em array
param(

[ValidateCount(1, 10)]

[string[]1$Servidores

AllowNull e AllowEmptyString
param(
[AllowNull()]

[string]$Opcional,

[AllowEmptyString()]
[string]$PodeSerVazio

)

Exemplo Completo: Script com Validacao

Arquivo: CriarUsuario.ps1

<#
.SYNOPSIS

Cria um novo usuario no sistema
.DESCRIPTION

Script para criagdo de usuario com validagcées completas
.PARAMETER Nome

Nome completo do usuario
.PARAMETER Usuario

Login do usuario (3-20 caracteres)
.PARAMETER Email

Email valido do usuério
.PARAMETER Departamento

Departamento do usuario

.EXAMPLE

\CriarUsuario.ps1 -Nome "Jodo Silva"-Usuario "jsilva" -Email
"loao@empresa.com" -Departamento Tl

#>

param(
[Parameter(Mandatory=$true, HelpMessage="Digite 0 nome completo")]
[ValidateNotNullOrEmpty()]
[ValidateLength(3, 100)]

[string]$Nome,

[Parameter(Mandatory=$true)]
[ValidateLength(3, 20)]
[ValidatePattern(""[a-zA-Z0-9_-]+$")]

[string]$Usuario,

[Parameter(Mandatory=$true)]
[ValidatePattern(""[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")]

[string]$Email,
[Parameter(Mandatory=$true)]
[ValidateSet("TI", "RH", "Financeiro", "Operacional", "Comercial")]

[string]$Departamento,

[ValidateRange(1, 150)]

[int]$DiasSenha = 90,

[switch]$Ativo = $true

Inicio do script

Write-Host " n=== CRIAGCAO DE USUARIO ==="-ForegroundColor Cyan

Validacbes adicionais

Write-Host "™ nValidando informacgoes..." -ForegroundColor Yellow

Verificar se usuario ja existe (simulagéo)

$usuariosExistentes = @("admin", "root", "teste")
if ($usuariosExistentes -contains $Usuario.ToLower()) {
Write-Host "ERRO: Usuario '$Usuario' ja existe!" -ForegroundColor Red

exit 1

Criar objeto de usuario
$novoUsuario = [PSCustomObject]@{
Nome = $Nome
Usuario = $Usuario
Email = $Email
Departamento = $Departamento
DataCriacao = Get-Date
DiasSenha = $DiasSenha
Ativo = $Ativo

ID = (Get-Random -Minimum 1000 -Maximum 9999)

Exibir resumo

Write-Host "" nResumo do Usuario:" -ForegroundColor Green

$novoUsuario | Format-List

Confirmacgéo
$confirmacao = Read-Host " nConfirma a criagdo do usuario? (S/N)"
if ($confirmacao -eq 'S' -or $confirmacao -eq's') {

Write-Host "Usuario criado com sucesso!" -ForegroundColor Green

Salvar em arquivo (simulagéo)

$novoUsuario | Export-Csv "usuarios.csv" -Append -NoTypelnformation

#Log

$logEntry = "$(Get-Date -Format 'yyyy-MM-dd HH:mm:ss') - Usuario $Usuario
criado"

$logEntry | Out-File "usuarios.log" -Append
} else{
Write-Host "Operacao cancelada." -ForegroundColor Yellow
}
4.1.3 Fungcoes em Scripts
Criando Funcoes
Sintaxe basica
function Get-MeuDado {

codigo da funcéo

Fungcdo com pardmetros
function Get-Saudacao{
param(

[string]$Nome

return "Ola, $Nome!"

Funcao avancada (com cmdlet binding)
function Get-InformacaoServidor {
[CmdletBinding()]
param(
[Parameter(Mandatory=$true, ValueFromPipeline=$true)]

[string]$ComputerName

begin {

Write-Verbose "Iniciando coleta de informacdes”

process {

try {

$0s = Get-CimlInstance -ClassName Win32_OperatingSystem -
ComputerName $ComputerName

[PSCustomObject]@{
Computador = $ComputerName
SO = $0s.Caption
Versao = $os.Version
Arquitetura = $0s.0SArchitecture

MemoriaGB = [math]::Round($os.TotalVisibleMemorySize / 1MB, 2)

}

catch{

Write-Error "Erro ao coletar dados de $ComputerName : $_

end {

Write-Verbose "Coleta finalizada"

Usar a fungéo

Get-InformacaoServidor -ComputerName "localhost" -Verbose
Escopo de Fungoes

Funcdo em escopo de script

function Script:MinhaFuncao {

Write-Host "Funcéo de script"

Funcdo em escopo global
function Global:OutraFuncao {

Write-Host "Funcéao global"

Funcéo privada (ndo exportada de mdédulos)
function Private:FuncaoPrivada {

Write-Host "Funcéao privada"

}

Exemplo Completo: Biblioteca de Fungées

Arquivo: BibliotecaUtils.ps1

<#
.SYNOPSIS
Biblioteca de funcgées utilitarias

#>

Funcéao para validar email
function Test-Email {
<#
.SYNOPSIS
Valida formato de email
.PARAMETER Email
Email a ser validado
.EXAMPLE
Test-Email -Email "usuario@dominio.com”
#>
[CmdletBinding()]
param(
[Parameter(Mandatory=$true)]

[string]$Email

$pattern = "*[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-ZA-Z]{2,}$"

return $Email -match $pattern

Funcéo para obter tamanho de diretdrio
function Get-DirectorySize {
<#
.SYNOPSIS
Calcula tamanho total de um diretdrio
.PARAMETER Path
Caminho do diretorio
.EXAMPLE
Get-DirectorySize -Path "C:\Logs"
#>
[CmdletBinding()]
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Path

$size = (Get-Childltem -Path $Path -Recurse -File |

Measure-Object -Property Length -Sum).Sum

[PSCustomObject]@{
Caminho = $Path
TotalBytes = $size
TotalMB = [math]::Round($size / 1TMB, 2)

TotalGB = [math]::Round($size / 1GB, 2)

Funcdo para criar backup
function New-Backup {
<#
.SYNOPSIS
Cria backup compactado de um diretdrio
.PARAMETER Source
Diretdrio de origem
.PARAMETER Destination
Diretdrio de destino
.EXAMPLE
New-Backup -Source "C:\Dados" -Destination "D:\Backups"
#>
[CmdletBinding()]
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Source,

[Parameter(Mandatory=$true)]

[string]$Destination

Criar diretdrio de destino se nao existir
if (-not (Test-Path $Destination)) {

New-Item -Path $Destination -ltemType Directory | Out-Null

Nome do arquivo de backup
$timestamp = Get-Date -Format "yyyyMMdd_HHmmss"
$backupName = "Backup_$timestamp.zip"

$backupPath = Join-Path $Destination $backupName

Write-Host "Criando backup: $backupPath" -ForegroundColor Yellow

try {

Criar arquivo ZIP

Compress-Archive -Path $Source -DestinationPath $backupPath -
CompressionLevel Optimal

$filelnfo = Get-Item $backupPath

Write-Host "Backup criado com sucesso!" -ForegroundColor Green

Write-Host "Tamanho: $([math]::Round($filelnfo.Length / 1MB, 2)) MB" -
ForegroundColor Cyan

return [PSCustomObject]@{
Sucesso = $true
ArquivoBackup = $backupPath
Tamanho = $filelnfo.Length

DataCriacao = $filelnfo.CreationTime

}

catch{
Write-Host "Erro ao criar backup: $_" -ForegroundColor Red
return [PSCustomObject]@{

Sucesso = $false

Erro = $_.Exception.Message

Funcao para limpeza de arquivos antigos
function Remove-OldFiles {
<#
.SYNOPSIS
Remove arquivos mais antigos que X dias
.PARAMETER Path
Diretorio a ser limpo
.PARAMETER Days
Arquivos mais antigos que esta quantidade de dias serdo removidos
.PARAMETER Whatlf
Simula a operacdo sem executar
.EXAMPLE
Remove-OldFiles -Path "C:\Logs" -Days 30
#>
[CmdletBinding(SupportsShouldProcess=$true)]
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Path,

[Parameter(Mandatory=$true)]
[ValidateRange(1, 365)]

[int]$Days

$dataLimite = (Get-Date).AddDays(-$Days)

Write-Host " nBuscando arquivos anteriores a:
$($dataLimite.ToString('dd/MM/yyyy'))" -ForegroundColor Yellow

$arquivosAntigos = Get-Childltem -Path $Path -File -Recurse |

Where-Object { $_.LastWriteTime -lt $dataLimite }

if ($arquivosAntigos.Count -eq 0) {
Write-Host "Nenhum arquivo antigo encontrado." -ForegroundColor Green

return

Write-Host "Encontrados $($arquivosAntigos.Count) arquivos antigos" -
ForegroundColor Cyan

$tamanhoTotal = ($arquivosAntigos | Measure-Object -Property Length -
Sum).Sum

Write-Host "Espaco a ser liberado: $([math]::Round($tamanhoTotal / 1MB, 2))
MB" -ForegroundColor Cyan

$removidos =0
foreach ($arquivo in $arquivosAntigos) {
if ($PSCmdlet.ShouldProcess($arquivo.FullName, "Remover arquivo")) {
try {
Remove-Iltem -Path $arquivo.FullName -Force

$removidos++

Write-Verbose "Removido: $($arquivo.Name)"

}

catch{

Write-Warning "Erro ao remover $($arquivo.Name): $_

Write-Host " n$removidos arquivos removidos com sucesso!" -ForegroundColor
Green

}

Funcao para monitorar uso de disco
function Get-DiskUsage {
<#
.SYNOPSIS
Retorna uso de disco com alertas
.PARAMETER ThresholdPercent
Percentual de alerta
.EXAMPLE
Get-DiskUsage -ThresholdPercent 80
#>
[CmdletBinding()]
param(
[ValidateRange(1, 100)]

[int]$ThresholdPercent = 80

$discos = Get-CimlInstance -ClassName Win32_LogicalDisk -Filter "DriveType=3"

foreach ($disco in $discos) {

$percentualUsado =[math]::Round((($disco.Size - $disco.FreeSpace) /
$disco.Size) * 100, 2)

$status = if ($percentualUsado -ge $ThresholdPercent) {" 4. ALERTA" }else {
n OK" }

[PSCustomObject]@{
Disco = $disco.DevicelD
TamanhoGB = [math]::Round($disco.Size / 1GB, 2)
LivreGB =[math]::Round($disco.FreeSpace / 1GB, 2)
UsadoGB = [math]::Round(($disco.Size - $disco.FreeSpace)/ 1GB, 2)
PercentualUsado = $percentualUsado

Status = $status

Exportar fungées (se usado como maddulo)

Export-ModuleMember -Function Test-Email, Get-DirectorySize, New-Backup,
Remove-OldFiles, Get-DiskUsage

Usar a biblioteca:
Dot source (carregar fungbes no escopo atual)

. \BibliotecaUtils.ps1

Usar funcboes
Test-Email -Email "usuario@exemplo.com"

Get-DirectorySize -Path "C:\Logs"

New-Backup -Source "C:\Dados" -Destination "D:\Backups'
Remove-OldFiles -Path "C:\Logs" -Days 30 -Whatlf
Get-DiskUsage -ThresholdPercent 75
4.1.4 Tratamento de Erros
Try-Catch-Finally
Estrutura basica
try {
Codigo que pode gerar erro
Get-ltem "C:\Arquivolnexistente.txt" -ErrorAction Stop
}
catch{
Tratar erro
Write-Host "Erro capturado: $($_.Exception.Message)" -ForegroundColor Red
}
finally {
Sempre executado (opcional)

Write-Host "Bloco finally executado”

Multiplos catches (tipos especificos)

try {

$resultado=10/0

}

catch [System.DivideByZeroException] {
Write-Host "Erro: Divisdo por zero"

}

catch [System.lO.FileNotFoundException] {

Write-Host "Erro: Arquivo ndo encontrado"

}

catch{

Write-Host "Erro genérico: $_"

Varidvel automética $_ ou $PSltem

try{

Get-Content "arquivo_inexistente.txt" -ErrorAction Stop
}
catch{
Write-Host "Mensagem: $($_.Exception.Message)"
Write-Host "Tipo: $($_.Exception.GetType().FullName)"
Write-Host "Linha: $($_.InvocationiInfo.ScriptLineNumber)"
Write-Host "Comando: $($_.InvocationlInfo.Line)"
}
ErrorAction e ErrorActionPreference
ErrorActionPreference (escopo do script)
$ErrorActionPreference = "Stop" # Trata erros como terminantes
$ErrorActionPreference = "Continue" # Padréo - exibe erro e continua
$ErrorActionPreference = "SilentlyContinue" # Suprime erro

$ErrorActionPreference ="Inquire" # Pergunta ao usudrio

ErrorAction (por comando)
Get-ltem "arquivo.txt" -ErrorAction Stop
Get-ltem "arquivo.txt" -ErrorAction SilentlyContinue

Get-ltem "arquivo.txt" -ErrorAction Ignore

Capturar erro em variavel

Get-ltem "arquivo.txt" -ErrorAction SilentlyContinue -ErrorVariable meuErro
if ($meuErro) {

Write-Host "Erro ocorreu: $meuErro"

Varidvel automatica $Error

$Error[0] # Ultimo erro

$Error.Count # Quantidade de erros
$Error.Clear() # Limpar histérico de erros
Throw - Gerar Erros

Throw simples

throw "Erro customizado”

Throw com tipo

throw [System.ArgumentException]::new("Pardmetro invalido")
Throw condicional
function Divide-Numero {

param([int}]$Numero, [int]$Divisor)

if ($Divisor -eq 0) {

throw "Divisor ndo pode ser zero'

return $Numero / $Divisor

try {

Divide-Numero -Numero 10 -Divisor 0
}
catch{
Write-Host "Erro: $_" -ForegroundColor Red
}
Exemplo Completo: Script com Tratamento Robusto de Erros

Arquivo: ProcessarArquivos.ps1

<#
.SYNOPSIS
Processa arquivos com tratamento robusto de erros

#>

param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$OrigemPath,

[Parameter(Mandatory=$true)]

[string]$DestinoPath,

[switch]$ContinueOnError

Configuracéo de erro

$ErrorActionPreference = if ($ContinueOnError) { "Continue" } else { "Stop" }

Contador de resultados

$script:sucessos =0
$script:falhas = 0

$script:erros = @()

Funcéo para registrar erro
function Write-ErrorLog {
param(
[string]$Arquivo,

[string]$Mensagem

$script:falhas++

$erro = [PSCustomObject]@{
Timestamp = Get-Date
Arquivo = $Arquivo
Erro = $Mensagem

}

$script:erros += $erro

Write-Host "ERRO: $Arquivo - $Mensagem" -ForegroundColor Red

Funcédo para processar arquivo

function Process-File {

param([System.lO.FileInfo]$Arquivo)

try {

Write-Verbose "Processando: $($Arquivo.Name)"

Validar se arquivo ndo esta em uso

try {
$stream = [System.|O.File]::Open($Arquivo.FullName, 'Open’, 'Read’, 'None')
$stream.Close()
$stream.Dispose()

}

catch{

throw "Arquivo em uso por outro processo"

Validar tamanho
if (JArquivo.Length -eq 0) {

throw "Arquivo vazio"

Criar diretdrio de destino
if (-not (Test-Path $DestinoPath)) {

New-Item -Path $DestinoPath -ltemType Directory -Force | Out-Null

Copiar arquivo
$destino = Join-Path $DestinoPath $Arquivo.Name

Copy-Item -Path $Arquivo.FullName -Destination $destino -Force -ErrorAction
Stop

Validar copia

$arquivoDestino = Get-ltem $destino

if ($arquivoDestino.Length -ne $Arquivo.Length) {

throw "Tamanho do arquivo de destino difere do original"

$script:sucessos++

Write-Host "v $($Arquivo.Name) processado com sucesso" -ForegroundColor
Green

return $true
}
catch{
Write-ErrorLog -Arquivo $Arquivo.Name -Mensagem $_.Exception.Message

return $false

Inicio do processamento
Write-Host """ n=== PROCESSAMENTO DE ARQUIVOS ==="-ForegroundColor Cyan
Write-Host "Origem: $OrigemPath" -ForegroundColor Yellow

Write-Host "Destino: $DestinoPath" -ForegroundColor Yellow

try{

Obter arquivos
Write-Host " nBuscando arquivos..." -ForegroundColor Yellow

$arquivos = Get-Childltem -Path $OrigemPath -File -ErrorAction Stop

if ($arquivos.Count -eq 0) {

Write-Host "Nenhum arquivo encontrado no diretério de origem." -
ForegroundColor Yellow

exit0

Write-Host "Encontrados $($arquivos.Count) arquivos" -ForegroundColor Cyan

Processar cada arquivo

Write-Host " nProcessando arquivos..." -ForegroundColor Yellow

foreach ($arquivo in $arquivos) {

$resultado = Process-File -Arquivo $arquivo

Se ndo for para continuar em erro e houve falha, parar
if (-not $ContinueOnError -and -not $resultado) {

throw "Processamento interrompido devido a erro”

}

catch{
Write-Host "* nERRO CRITICO: $($_.Exception.Message)" -ForegroundColor Red
Write-Host "StackTrace: $($_.ScriptStackTrace)" -ForegroundColor DarkRed
exit 1

}

finally {
Relatorio final

Write-Host "* n=== RESULTADO DO PROCESSAMENTO ==="-ForegroundColor
Cyan

Write-Host "Total de arquivos: $($arquivos.Count)" -ForegroundColor White

Write-Host "Sucessos: $script:sucessos" -ForegroundColor Green

Write-Host "Falhas: $script:falhas" -ForegroundColor Red

Salvar log de erros se houver
if ($script:erros.Count -gt 0) {

$logPath = "ProcessamentoErros_$(Get-Date -Format
'yyyyMMdd_HHmMmess').csv"

$script:erros | Export-Csv $logPath -NoTypelnformation

Write-Host " nLog de erros salvo em: $logPath" -ForegroundColor Yellow

Status de saida
if ($script:falhas -eq 0) {

Write-Host " " nProcessamento concluido com sucesso!" -ForegroundColor
Green

exit 0
}else{
Write-Host " nProcessamento concluido com erros." -ForegroundColor Yellow

exit 1

}
4.1.5 Logging e Debugging

Write-Host vs Write-Output vs Write-Verbose
Write-Host: saida visual (ndo vai para pipeline)

Write-Host "Mensagem para o usuario" -ForegroundColor Green

Write-Output: saida para pipeline

Write-Output "Dados para processamento”

Write-Verbose: mensagens detalhadas (precisa -Verbose)

Write-Verbose "Informacéao de debug"

Write-Warning: avisos

Write-Warning "Isso pode causar problemas

Write-Error: erros ndo terminantes

Write-Error "Ocorreu um erro"

Write-Information: informacgdes (PS 5.0+)

Write-Information "Informagao importante" -InformationAction Continue

Write-Debug: mensagens de debug
Write-Debug "Valor da variavel: $valor"
Sistema de Logging Completo

Arquivo: LoggingSystem.ps1

Enum para niveis de log
enum LoglLevel {

DEBUG =0

INFO =1

WARNING =2

ERROR =3

CRITICAL=4

Configuracéo de logging
$script:LogConfig = @

LogPath = "\logs"

LogFile = "aplicacao_$(Get-Date -Format 'yyyyMMdd').log"
MinLevel = [LogLevel]::INFO
ConsoleOutput = $true

FileOutput = $true

Funcao principal de logging
function Write-Log {
[CmdletBinding()]
param(
[Parameter(Mandatory=$true)]

[string]$Message,

[LogLevel]$Level = [LogLevel]::INFO,

[string]$Source = "SYSTEM"

Verificar nivel minimo

if ($Level -lt $script:LogConfig.MinLevel) {

return

Formato da mensagem
$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss. fff"

$logEntry = "[$timestamp] [$Level] [$Source] $Message"

Saida no console

if ($script:LogConfig.ConsoleOutput) {
$color = switch ($Level) {
([LogLevel]::DEBUG) {"Gray"}
([LogLevel]::INFO) {"White"}
([LogLevel]::WARNING) {"Yellow" }
([LogLevel]::ERROR) {"Red"}
([LogLevel]::CRITICAL) { "Magenta" }

}

Write-Host $logEntry -ForegroundColor $color

Saida em arquivo
if ($script:LogConfig.FileOutput) {
Criar diretorio se ngo existir
if (-not (Test-Path $script:LogConfig.LogPath)) {

New-Item -Path $script:LogConfig.LogPath -ItemType Directory -Force | Out-
Null

}

$logFilePath = Join-Path $script:LogConfig.LogPath $script:LogConfig.LogFile

$logEntry | Out-File -FilePath $logFilePath -Append -Encoding UTF8

Funcées auxiliares
function Write-LogDebug{
param([string]$Message, [string]$Source = "DEBUG")

Write-Log -Message $Message -Level ([LogLevel]::DEBUG) -Source $Source

function Write-Loglnfo {
param([string]$Message, [string]$Source = "INFO")

Write-Log -Message $Message -Level ([LogLevel]::INFO) -Source $Source

function Write-LogWarning {
param([string]$Message, [string]$Source = "WARNING")

Write-Log -Message $Message -Level ([LogLevel]::WARNING) -Source $Source

function Write-LogError {
param([string]$Message, [string]$Source = "ERROR")

Write-Log -Message $Message -Level ([LogLevel]::ERROR) -Source $Source

function Write-LogCritical {
param([string]$Message, [string]$Source = "CRITICAL")

Write-Log -Message $Message -Level ([LogLevel]::CRITICAL) -Source $Source

Funcdo para configurar logging
function Set-LogConfiguration {
param(
[string]$LogPath,
[LogLevel]$MinLevel,

[bool]$ConsoleOutput,

[bool]$FileOutput

if ($LogPath) { $script:LogConfig.LogPath = $LogPath }

if ($MinLevel) { $script:LogConfig.MinLevel = $MinLevel }

if (PSBoundParameters.ContainsKey('ConsoleOutput')){
$script:LogConfig.ConsoleOutput = $ConsoleOutput

}

if (PSBoundParameters.ContainsKey('FileOutput')) {

$script:LogConfig.FileOutput = $FileOutput

Funcao para limpar logs antigos
function Clear-OldLogs {
param(

[int]$DaysToKeep =30

$dataLimite = (Get-Date).AddDays(-$DaysToKeep)

$arquivosAntigos = Get-Childltem -Path $script:LogConfig.LogPath -Filter "*.log"

Where-Object { $_.LastWriteTime -lt $dataLimite }

foreach ($arquivo in $arquivosAntigos) {
Remove-Iltem -Path $arquivo.FullName -Force

Write-Loglnfo "Log antigo removido: $($arquivo.Name)"

Exemplo de uso

Write-LogInfo "Aplicagao iniciada"

Write-LogDebug "Variavel X = 10"

Write-LogWarning "Conexéao lenta detectada"
Write-LogError "Falha ao conectar ao servidor"
Write-LogCritical "Sistema de pagamento indisponivel"
Debugging com Set-PSDebug

Ativar debug (mostra cada linha executada)

Set-PSDebug -Trace 1

Nivel de trace mais detalhado

Set-PSDebug -Trace 2

Strict mode (variaveis néo inicializadas geram erro)

Set-PSDebug -Strict

Desativar debug

Set-PSDebug -Off

Exemplo

Set-PSDebug -Trace 1

$nome = "Jodo"

Write-Host "Ola, $nome"
Set-PSDebug -Off

Breakpoints e Debugging Interativo

Definir breakpoint em linha especifica

Set-PSBreakpoint -Script "MeuScript.ps1" -Line 10

Breakpoint em variavel (quando modificada)

Set-PSBreakpoint -Script "MeuScript.ps1" -Variable "contador"”

Breakpoint em comando

Set-PSBreakpoint -Script "MeuScript.ps1" -Command "Get-Process

Listar breakpoints

Get-PSBreakpoint

Remover breakpoint

Remove-PSBreakpoint -Id 1

Remover todos

Get-PSBreakpoint | Remove-PSBreakpoint

No VS Code:

- F9: Toggle breakpoint

- F5: Iniciar debug

#-F10: Step Over

#-F11: Step Into

- Shift+F11: Step Out

4.1.6 Scripts Avancados - Exemplos Praticos
Exemplo 1: Script de Monitoramento de Servidor

Arquivo: MonitorServidor.ps1

<#

.SYNOPSIS
Monitora recursos do servidor e gera alertas
.DESCRIPTION
Script completo de monitoramento com multiplas verificacbes
.PARAMETER ComputerName
Nome do servidor a monitorar
.PARAMETER AlertEmail
Email para envio de alertas
.PARAMETER CPUThreshold
Limite de uso de CPU (%)
.PARAMETER MemoryThreshold
Limite de uso de meméoria (%)
.PARAMETER DiskThreshold
Limite de uso de disco (%)
.EXAMPLE

.\MonitorServidor.ps1 -ComputerName "SERVERO01" -AlertEmail
"admin@empresa.com”

#>

[CmdletBinding()]
param(
[Parameter(Mandatory=$false)]

[string]$ComputerName = $env:COMPUTERNAME,

[Parameter(Mandatory=$false)]
[ValidatePattern(""[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")]

[string]$AlertEmail,

[ValidateRange(1, 100)]

[int]$CPUThreshold = 80,

[ValidateRange(1, 100)]

[int}]$MemoryThreshold = 85,

[ValidateRange(1, 100)]

[int]$DiskThreshold =90,

[switch]$ContinuousMonitoring,

[int]$IntervalSeconds = 60

Configurar logging
$logPath = "\MonitorLogs"
if (-not (Test-Path $logPath)) {

New-Item -Path $logPath -IltemType Directory | Out-Null

$logFile = Join-Path $logPath "Monitor_$(Get-Date -Format 'yyyyMMdd').log"

function Write-MonitorLog {
param(
[string]$Message,

[string]$Level = "INFO"

$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss'

$logEntry = "[$timestamp] [$Level] $Message"

$color = switch ($Level) {
"INFO" {"White"}
"WARNING" { "Yellow" }
"ERROR" {"Red"}
"ALERT" {"Magenta"}

default {"Gray"}

Write-Host $logEntry -ForegroundColor $color

$logEntry | Out-File -FilePath $logFile -Append -Encoding UTF8

function Get-CPUUsage {

try {

$cpu = Get-Cimlnstance -ClassName Win32_Processor -ComputerName
$ComputerName

$usage = $cpu.LoadPercentage

return [PSCustomObject]@{
Metric = "CPU"
Value = $usage
Threshold = $CPUThreshold
Status = if ($usage -ge $CPUThreshold) { "ALERT" } else { "OK" }

Message = "Uso de CPU: $usage%"

}

catch{

Write-MonitorLog "Erro ao obter uso de CPU: $_" -Level "ERROR"

return $null

function Get-MemoryUsage {

try {

$os = Get-Cimlnstance -ClassName Win32_OperatingSystem -
ComputerName $ComputerName

$totalMemory = $os.TotalVisibleMemorySize
$freeMemory = $0s.FreePhysicalMemory

$usedPercent = [math]::Round((($totalMemory - $freeMemory) /
$totalMemory) * 100, 2)

return [PSCustomObject]@{
Metric = "Memory"
Value = $usedPercent
Threshold = $MemoryThreshold
Status = if ($usedPercent -ge $MemoryThreshold) { "ALERT" } else { "OK" }

Message = "Uso de Memoria: $usedPercent% (Livre:
$([math]::Round($freeMemory/1MB, 2)) GB)"

}
}

catch{

Write-MonitorLog "Erro ao obter uso de meméaria: $_" -Level "ERROR"

return $null

function Get-DiskUsage {

try {

$discos = Get-CimlInstance -ClassName Win32_LogicalDisk -Filter
"DriveType=3" -ComputerName $ComputerName

$resultados = @()

foreach ($disco in $discos) {

$usedPercent = [math]::Round((($disco.Size - $disco.FreeSpace) /
$disco.Size) * 100, 2)

$resultados += [PSCustomObject]@{
Metric = "Disk $($disco.DevicelD)"
Value = $usedPercent
Threshold = $DiskThreshold
Status = if ($usedPercent -ge $DiskThreshold) { "ALERT" } else { "OK" }

Message = "Disco $($disco.DevicelD): $usedPercent% usado (Livre:
$([math]::Round($disco.FreeSpace/1GB, 2)) GB)"

}

return $resultados

}
catch{

Write-MonitorLog "Erro ao obter uso de disco: $_" -Level "ERROR"

return $null

function Get-ServiceStatus {
try {
$servicosCriticos = @("wuauserv", "BITS", "EventLog", "WinRM")

$resultados = @()

foreach ($servico in $servicosCriticos) {

$svc = Get-Service -Name $servico -ComputerName $ComputerName -
ErrorAction SilentlyContinue

if ($sve) {
$resultados += [PSCustomObject]@{
Metric = "Service $servico"
Value = $svc.Status
Threshold = "Running"
Status = if ($svc.Status -ne "Running") { "ALERT" } else { "OK" }

Message = "Servigo $($svc.DisplayName): $($svc.Status)"

return $resultados

}
catch{

Write-MonitorLog "Erro ao verificar servigos: $_" -Level "ERROR"

return $null

function Send-AlertEmail {
param(

[array]$Alerts

if (-not $AlertEmail) {

return

try {

$body = "ALERTAS DE MONITORAMENTO - $ComputerName ' n" n"
$body +="Data/Hora: $(Get-Date -Format 'dd/MM/yyyy HH:mm:ss') "' n" n"

$body +="Alertas: ' n"

foreach ($alert in $Alerts) {

$body +="- $($alert.Message) n"

Configurar par@metros de email (ajustar conforme sua infraestrutura)
$emailParams = @{

From ="monitor@empresa.com"

To = $AlertEmail

Subject = "ALERTA: $ComputerName - $(Get-Date -Format 'dd/MM/yyyy
HH:mm:ss')"

Body = $body

SmtpServer = "smtp.empresa.com"

Send-MailMessage @emailParams

Write-MonitorLog "Email de alerta enviado para $AlertEmail" -Level "INFO"
}
catch{

Write-MonitorLog "Erro ao enviar email: $_" -Level "ERROR"

function Start-Monitoring {
Write-MonitorLog "===== MONITORAMENTO INICIADO ====="-Level "INFO"
Write-MonitorLog "Servidor: $ComputerName" -Level "INFO"

Write-MonitorLog "Limites: CPU=$CPUThreshold%,
Memoéria=$MemoryThreshold%, Disco=$DiskThreshold%" -Level "INFO"

do{

Write-MonitorLog "™ n----- Nova Verificagao ----- "-Level "INFO"

$todasMetricas = @()

$alertas = @()

Coletar métricas
$cpu = Get-CPUUsage
if ($cpu) {
$todasMetricas += $cpu

if ($cpu.Status -eq "ALERT") { $alertas += $cpu }

$memoria = Get-MemoryUsage
if ($memoria) {
$todasMetricas += $memoria

if ($memoria.Status -eq "ALERT") { $alertas += $memoria }

$discos = Get-DiskUsage
if ($discos) {
$todasMetricas += $discos

$alertas += $discos | Where-Object Status -eq "ALERT"

$servicos = Get-ServiceStatus
if ($servicos) {
$todasMetricas += $servicos

$alertas += $servicos | Where-Object Status -eq "ALERT"

Exibir resultados
foreach ($metrica in $todasMetricas) {
$level = if ($metrica.Status -eq "ALERT") { "ALERT" } else { "INFO" }

Write-MonitorLog $metrica.Message -Level $level

Enviar alertas se houver
if (Palertas.Count -gt 0) {

Write-MonitorLog " n!!! $($alertas.Count) ALERTA(S) DETECTADO(S) !!!"
Level "ALERT"

Send-AlertEmail -Alerts $alertas

Salvar relatoério

$relatorioPath = Join-Path $logPath "Relatorio_$(Get-Date -Format
'yyyyMMdd_HHmMmess').csv"

$todasMetricas | Export-Csv -Path $relatorioPath -NoTypelnformation

if ($ContinuousMonitoring) {

Write-MonitorLog " nPréxima verificagdo em $intervalSeconds segundos..." -
Level "INFO"

Start-Sleep -Seconds $IntervalSeconds

} while ($ContinuousMonitoring)

Write-MonitorLog "” n===== MONITORAMENTO ENCERRADOQO ====="-Level
"INFO"

}

Executar monitoramento

try {

Start-Monitoring

}

catch{
Write-MonitorLog "ERRO CRITICO: $($_.Exception.Message)" -Level "ERROR"
Write-MonitorLog "StackTrace: $($_.ScriptStackTrace)" -Level "ERROR"

exit 1

Uso do script:
Monitoramento unico

\MonitorServidor.ps1 -ComputerName "SERVERO1"

Monitoramento continuo

\MonitorServidor.ps1 -ContinuousMonitoring -IntervalSeconds 300

Com alertas por email

AMonitorServidor.ps1 -AlertEmail "admin@empresa.com" -CPUThreshold 75

Monitoramento continuo com alertas

.\MonitorServidor.ps1 -ContinuousMonitoring -IntervalSeconds 60 -AlertEmail
"admin@empresa.com"

4.2 Gerenciamento de Tarefas Agendadas
4.2.1 Introducao as Tarefas Agendadas
O que sao Tarefas Agendadas?

Tarefas agendadas (Scheduled Tasks) permitem executar scripts, programas ou
comandos automaticamente em horarios especificos ou em resposta a eventos
do sistema.

Casos de uso comuns:

e Backups automaticos

e Limpeza de arquivos temporarios

e Coleta de métricas de sistema

e Sincronizagao de dados

e Envio derelatdrios

e Manutencgao de sistemas

e Monitoramento continuo
Componentes principais:

o Trigger (Gatilho): Quando a tarefa deve executar

e Action (Acao): O que a tarefa deve fazer

e Conditions (Condicoes): Requisitos para execucao

e Settings (Configuragées): Comportamento da tarefa
4.2.2 Cmdlets para Gerenciamento de Tarefas
PowerShell oferece cmdlets nativos para gerenciar tarefas agendadas:
Cmdlets principais
Get-ScheduledTask # Listar tarefas
New-ScheduledTask # Criar nova tarefa
Register-ScheduledTask # Registrar tarefa no sistema
Set-ScheduledTask # Modificar tarefa existente
Unregister-ScheduledTask # Remover tarefa
Start-ScheduledTask # Executar tarefa manualmente
Stop-ScheduledTask # Parar execugéo
Enable-ScheduledTask # Habilitar tarefa
Disable-ScheduledTask # Desabilitar tarefa
Get-ScheduledTaskinfo # Informacbes de execucéao
Listar Tarefas Agendadas
Listar todas as tarefas

Get-ScheduledTask

Listar tarefas ativas

Get-ScheduledTask | Where-Object State -eq 'Ready’

Listar tarefas desabilitadas

Get-ScheduledTask | Where-Object State -eq 'Disabled’

Buscar tarefa especifica

Get-ScheduledTask -TaskName "MinhaTask"

Listar tarefas em pasta especifica

Get-ScheduledTask -TaskPath "\Microsoft\Windows\WindowsUpdate\"

Detalhes de uma tarefa
$task = Get-ScheduledTask -TaskName "MinhaTask"

$task | Format-List *

Informacgédes de ultima execugédo

Get-ScheduledTasklnfo -TaskName "MinhaTask"

Filtrar tarefas

Get-ScheduledTask | Where-Object{
$_TaskName -like "*Backup*" -and
$_.State -eq 'Ready’

} | Select-Object TaskName, State, TaskPath

4.2.3 Criando Tarefas Agendadas

Componentes de uma Tarefa

1. ACTION - O que executar

$action = New-ScheduledTaskAction

2. TRIGGER - Quando executar

$trigger = New-ScheduledTaskTrigger

3. PRINCIPAL - Com quais credenciais

$principal = New-ScheduledTaskPrincipal

#4. SETTINGS - Configuracées adicionais

$settings = New-ScheduledTaskSettingsSet

#5. REGISTRAR a tarefa
Register-ScheduledTask
Exemplo 1: Tarefa Simples - Executar Script Diariamente
Definir acao: executar script PowerShell
$action = New-ScheduledTaskAction *
-Execute "PowerShell.exe"

-Argument "-NoProfile -ExecutionPolicy Bypass -File C:\Scripts\Backup.ps1"

Definir trigger: diariamente as 22:00

$trigger = New-ScheduledTaskTrigger -Daily -At "22:00"

Definir configuracbes

$settings = New-ScheduledTaskSettingsSet *
-AllowStartlfOnBatteries °
-DontStoplfGoingOnBatteries

-StartWhenAvailable

Registrar tarefa
Register-ScheduledTask °
-TaskName "Backup Diario" °
-Description "Executa backup didrio dos dados" °
-Action $action *
-Trigger $trigger
-Settings $settings °

-User "SYSTEM"

Write-Host "Tarefa criada com sucesso!"

Exemplo 2: Miiltiplos Triggers

#Acao

$action = New-ScheduledTaskAction *
-Execute "PowerShell.exe"

-Argument "-File C:\Scripts\Monitor.ps1"

Multiplos triggers
$trigger1 = New-ScheduledTaskTrigger -AtStartup
$trigger2 = New-ScheduledTaskTrigger -Daily -At "08:00"

$trigger3 = New-ScheduledTaskTrigger -Daily -At "18:00"

Registrar com multiplos triggers
Register-ScheduledTask °
-TaskName "Monitoramento Sistema"
-Action $action °
-Trigger $trigger1, $trigger2, $trigger3 °
-User "SYSTEM"
Exemplo 3: Trigger por Evento
Criar trigger baseado em evento do log
$trigger = New-ScheduledTaskTrigger *

-AtLogOn

Ou trigger por evento especifico
$eventFilter = @"
<QueryList>

<Query Id="0" Path="System">

<Select Path="System">

*[System[Provider[@Name='Microsoft-Windows-Power-Troubleshooter'] and
(EventIiD=1)]]

</Select>
</Query>
</QueryList>

'@

Criar CIM instance para trigger de evento

$class = Get-CimClass -ClassName MSFT_TaskEventTrigger -Namespace
Root/Microsoft/Windows/TaskScheduler

$trigger = New-CimlInstance -CimClass $class -ClientOnly
$trigger.Subscription = $eventFilter

$trigger.Enabled = $true

#Acdo
$action = New-ScheduledTaskAction *
-Execute "PowerShell.exe" °

-Argument "-File C:\Scripts\TratarEvento.ps1"

Registrar

Register-ScheduledTask °
-TaskName "Responder Evento Sistema" °
-Action $action °
-Trigger $trigger

4.2.4 Tipos de Triggers

Trigger unico (uma vez)

$trigger = New-ScheduledTaskTrigger -Once -At "2025-12-31 23:59"

Trigger diario

$trigger = New-ScheduledTaskTrigger -Daily -At "03:00"

Trigger semanal (multiplos dias)

$trigger = New-ScheduledTaskTrigger -Weekly -DaysOfWeek Monday, Wednesday,
Friday -At "18:00"

Trigger na inicializagcdo

$trigger = New-ScheduledTaskTrigger -AtStartup

Trigger no logon

$trigger = New-ScheduledTaskTrigger -AtLogOn

Trigger com repeticéo

$trigger = New-ScheduledTaskTrigger -Once -At "08:00" -Repetitioninterval (New-
TimeSpan -Hours 1) -RepetitionDuration (New-TimeSpan -Hours 12)

Trigger com atraso

$trigger = New-ScheduledTaskTrigger -Daily -At "00:00"
$trigger.Delay = "PT15M" # Atraso de 15 minutos

4.2.5 Configuracoes Avancadas

Settings completos

$settings = New-ScheduledTaskSettingsSet *

-AllowStartlfOnBatteries ° # Permitir iniciar em bateria
-DontStoplfGoingOnBatteries # Nao parar se entrar em bateria
-StartWhenAvailable ° # Iniciar quando possivel se perdeu horario
-RunOnlylfNetworkAvailable ° # Executar apenas se houver rede

-ExecutionTimeLimit (New-TimeSpan -Hours 2) © # Tempo maximo de execugégo
-RestartCount 3 ° # Tentativas de restart em falha

-Restartinterval (New-TimeSpan -Minutes 5) © # Intervalo entre tentativas

-Multiplelnstances IgnoreNew # Comportamento se ja estiver executando

Outras opg¢oes de MultipleInstances
- Parallel: Executar em paralelo
- Queue: Enfileirar
- StopExisting: Parar existente e iniciar nova
- IgnoreNew: Ignorar nova instancia (padrdo)
4.2.6 Credenciais e Permissoes
Executar como SYSTEM
Register-ScheduledTask °

-TaskName "MinhaTask"

-Action $action °

-Trigger $trigger *

-User "SYSTEM"

Executar como usuario especifico (solicita senha)
Register-ScheduledTask °

-TaskName "MinhaTask" °

-Action $action *

-Trigger $trigger

-User "DOMINIO\Usuario"

Executar com privilégios elevados
$principal = New-ScheduledTaskPrincipal *
-Userld "SYSTEM" *
-LogonType ServiceAccount *

-RunLevel Highest

Register-ScheduledTask °
-TaskName "MinhaTask" °
-Action $action °
-Trigger $trigger *

-Principal $principal

Executar independente do usuario estar logado
$principal = New-ScheduledTaskPrincipal °
-Userld "DOMINIO\Usuario"
-LogonType Password °

-RunLevel Limited

Usar credencial armazenada
$cred = Get-Credential
Register-ScheduledTask °
-TaskName "MinhaTask"
-Action $action °
-Trigger $trigger °
-User $cred.UserName *
-Password $cred.GetNetworkCredential().Password
4.2.7 Modificar e Gerenciar Tarefas Existentes
Obter tarefa existente

$task = Get-ScheduledTask -TaskName "MinhaTask"

Modificar trigger
$newTrigger = New-ScheduledTaskTrigger -Daily -At "05:00"

Set-ScheduledTask -TaskName "MinhaTask" -Trigger $newTrigger

Modificar acéo

$newAction = New-ScheduledTaskAction *
-Execute "PowerShell.exe"
-Argument "-File C:\Scripts\NovoScript.ps1"

Set-ScheduledTask -TaskName "MinhaTask" -Action $newAction

Desabilitar tarefa

Disable-ScheduledTask -TaskName "MinhaTask"

Habilitar tarefa

Enable-ScheduledTask -TaskName "MinhaTask"

Executar tarefa manualmente

Start-ScheduledTask -TaskName "MinhaTask"

Parar execugéo

Stop-ScheduledTask -TaskName "MinhaTask"

Remover tarefa

Unregister-ScheduledTask -TaskName "MinhaTask" -Confirm:$false

Exportar tarefa para XML
$task = Get-ScheduledTask -TaskName "MinhaTask"

$task | Export-ScheduledTask | Out-File "C:\Backup\MinhaTask.xml"

Importar tarefa de XML

Register-ScheduledTask -Xml (Get-Content "C:\Backup\MinhaTask.xml" | Out-
String) -TaskName "MinhaTask"

4.2.8 Exemplo Completo: Sistema de Tarefas Agendadas

Arquivo: GerenciadorTarefas.ps1

<#
.SYNOPSIS
Sistema completo de gerenciamento de tarefas agendadas

#>

Funcao para criar tarefa de backup
function New-BackupTask {
param(
[string]$BackupPath = "C:\Backups",
[string]$SourcePath = "C:\Dados",

[string]$Horario = "22:00"

Write-Host "Criando tarefa de backup..." -ForegroundColor Yellow

Script de backup inline
$scriptBackup = @"
* $origem ='$SourcePath’
* $destino = '$BackupPath’
* $timestamp = Get-Date -Format 'yyyyMMdd_HHmmss'
*$nomeBackup = "Backup_" $timestamp.zip"

*$caminhoCompleto = Join-Path " $destino * $nomeBackup

if (-not (Test-Path " $destino)) {

New-Item -Path " $destino -IltemType Directory -Force | Out-Null

try{

Compress-Archive -Path " $origem -DestinationPath * $caminhoCompleto -
CompressionLevel Optimal

Write-Output "Backup criado: * $caminhoCompleto”

Limpar backups antigos (manter ultimos 7)
Get-Childltem -Path * $destino -Filter "Backup_*.zip" |
Sort-Object CreationTime -Descending |
Select-Object -Skip 7 |
Remove-Iltem -Force
}
catch{
Write-Error "Erro no backup: ~$_"

exit 1

Salvar script
$scriptPath = "C:\Scripts\BackupAutomatico.ps1"
if (-not (Test-Path "C:\Scripts")) {
New-ltem -Path "C:\Scripts" -ltemType Directory -Force | Out-Null

}
$scriptBackup | Out-File -FilePath $scriptPath -Encoding UTF8 -Force

Criar tarefa

$action = New-ScheduledTaskAction *

-Execute "PowerShell.exe" °

-Argument "-NoProfile -ExecutionPolicy Bypass -File " "$scriptPath™""

$trigger = New-ScheduledTaskTrigger -Daily -At $Horario

$settings = New-ScheduledTaskSettingsSet *
-AllowStartlfOnBatteries °
-DontStoplfGoingOnBatteries
-StartWhenAvailable -

-ExecutionTimeLimit (New-TimeSpan -Hours 2)

Register-ScheduledTask °
-TaskName "Backup Automatico Dados" °
-Description "Backup diario automatico em $Horario" °
-Action $action °
-Trigger $trigger
-Settings $settings
-User "SYSTEM" *

-Force

Write-Host "v Tarefa de backup criada com sucesso!" -ForegroundColor Green
Write-Host " Horario: $Horario" -ForegroundColor Cyan
Write-Host " Origem: $SourcePath" -ForegroundColor Cyan

Write-Host " Destino: $BackupPath" -ForegroundColor Cyan

Funcdo para criar tarefa de limpeza

function New-CleanupTask {

param(
[string]$TempPath = "C:\Temp",

[int]$DaysOld = 30

Write-Host "Criando tarefa de limpeza..." -ForegroundColor Yellow

$scriptLimpeza = @"
*$caminho ='$TempPath’
*$dias = $DaysOld

" $dataLimite = (Get-Date).AddDays(- " $dias)
if (Test-Path ~ $caminho) {
* $arquivos = Get-Childltem -Path ~ $caminho -Recurse -File |

Where-Object{ *$_.LastWriteTime -lt * $dataLimite }

* $totalArquivos = " $arquivos.Count

* $tamanhoTotal = (" $arquivos | Measure-Object -Property Length -Sum).Sum /
1MB

Write-Output "Encontrados " $totalArquivos arquivos antigos"

Write-Output "Espaco a liberar: * $([math]::Round(" $tamanhoTotal, 2)) MB"

* $arquivos | Remove-ltem -Force -ErrorAction SilentlyContinue

Write-Output "Limpeza concluida!”

$scriptPath = "C:\Scripts\LimpezaAutomatica.ps1"

$scriptLimpeza | Out-File -FilePath $scriptPath -Encoding UTF8 -Force

$action = New-ScheduledTaskAction *
-Execute "PowerShell.exe" °

-Argument "-NoProfile -ExecutionPolicy Bypass -File " "$scriptPath™ ""

Executar semanalmente aos domingos a 01:00

$trigger = New-ScheduledTaskTrigger -Weekly -DaysOfWeek Sunday -At "01:00"

$settings = New-ScheduledTaskSettingsSet *
-AllowStartlfOnBatteries *
-DontStoplfGoingOnBatteries

-StartWhenAvailable

Register-ScheduledTask °
-TaskName "Limpeza Arquivos Temporarios" °
-Description "Remove arquivos temporarios com mais de $DaysOld dias" *
-Action $action °
-Trigger $trigger *
-Settings $settings *
-User "SYSTEM" *

-Force

Write-Host "v Tarefa de limpeza criada com sucesso!" -ForegroundColor Green

Funcdo para criar tarefa de monitoramento
function New-MonitoringTask {
param(

[int]$IntervalMinutes =15

Write-Host "Criando tarefa de monitoramento..." -ForegroundColor Yellow

$scriptMonitor = @"

*$alertas = @)

Verificar CPU
*$cpu = (Get-CimInstance Win32_Processor).LoadPercentage
if (" $cpu -gt90) {

* $alertas +="CPU alta: * $cpu%"

Verificar Memoria
* $0s = Get-CimInstance Win32_OperatingSystem

*$memoriaUsada = [math]::Round(((" $os.TotalVisibleMemorySize -
" $0s.FreePhysicalMemory) / ~ $os.TotalVisibleMemorySize) * 100, 2)

if (" $memoriaUsada -gt 90) {

* $alertas += "Memoria alta: * $memoriaUsada%"

Verificar Disco
" $discos = Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3"

foreach (" $disco in " $discos){

* $percentUsado = [math]::Round(((" $disco.Size - ~ $disco.FreeSpace) /
* $disco.Size) * 100, 2)

if (" $percentUsado -gt 90) {

*$alertas +="Disco " $(" $disco.DevicelD) cheio: " $percentUsado%"

if (* $alertas.Count -gt 0) {
* $logPath = "C:\Logs\Alertas_" $(Get-Date -Format 'yyyyMMdd').log"
if (-not (Test-Path (Split-Path " $logPath))) {

New-Item -Path (Split-Path " $logPath) -ltemType Directory -Force | Out-Null

* $timestamp = Get-Date -Format 'yyyy-MM-dd HH:mm:ss'
foreach (" $alertain " $alertas) {

"[* $timestamp] ALERTA: " $alerta" | Out-File " $logPath -Append

$scriptPath = "C:\Scripts\MonitoramentoSistema.ps1"

$scriptMonitor | Out-File -FilePath $scriptPath -Encoding UTF8 -Force
$action = New-ScheduledTaskAction °
-Execute "PowerShell.exe" °

-Argument "-NoProfile -ExecutionPolicy Bypass -File " "$scriptPath ™ ""

Trigger repetido a cada X minutos

$trigger = New-ScheduledTaskTrigger *
-Once -At"00:00" °
-Repetitioninterval (New-TimeSpan -Minutes $IntervalMinutes) °

-RepetitionDuration ([TimeSpan]::MaxValue)

$settings = New-ScheduledTaskSettingsSet *
-AllowStartlfOnBatteries °
-DontStoplfGoingOnBatteries
-ExecutionTimeLimit (New-TimeSpan -Minutes 5) °

-Multiplelnstances IgnoreNew

Register-ScheduledTask °
-TaskName "Monitoramento Sistema" ~

-Description "Monitora recursos do sistema a cada $IntervalMinutes minutos"

-Action $action °
-Trigger $trigger
-Settings $settings °
-User "SYSTEM" °

-Force

Write-Host "v Tarefa de monitoramento criada com sucesso!" -ForegroundColor
Green

Write-Host " Intervalo: $IntervalMinutes minutos" -ForegroundColor Cyan

Funcao para listar todas as tarefas customizadas
function Get-CustomTasks {

$taskNames = @(

"Backup Automatico Dados",
"Limpeza Arquivos Temporarios',

"Monitoramento Sistema"

Write-Host " n===TAREFAS CUSTOMIZADAS ===" -ForegroundColor Cyan

foreach ($taskName in $taskNames) {

$task = Get-ScheduledTask -TaskName $taskName -ErrorAction
SilentlyContinue

if ($task) {

$info = Get-ScheduledTasklnfo -TaskName $taskName

Write-Host " n[$taskName]" -ForegroundColor Yellow

Write-Host " Estado: $($task.State)" -ForegroundColor $(if ($task.State -eq
'Ready') {'Green'} else {'Red'})

Write-Host " Ultima Execucao: $($info.LastRunTime)"
Write-Host " Préxima Execucgao: $($info.NextRunTime)"
Write-Host " Ultimo Resultado: $($info.LastTaskResult)"
}
else {
Write-Host " n[$taskName]" -ForegroundColor Yellow

Write-Host " Status: NAO CRIADA" -ForegroundColor Red

Funcao para remover todas as tarefas customizadas

function Remove-AllCustomTasks {

$taskNames = @(
"Backup Automatico Dados",
"Limpeza Arquivos Temporarios",

"Monitoramento Sistema"

Write-Host "Removendo tarefas customizadas..." -ForegroundColor Yellow

foreach ($taskName in $taskNames) {

try {

Unregister-ScheduledTask -TaskName $taskName -Confirm:$false -
ErrorAction Stop

Write-Host "v $taskName removida" -ForegroundColor Green

}

catch{

Write-Host " X $taskName nédo encontrada" -ForegroundColor Gray

Menu interativo
function Show-Menu {
Clear-Host

Write-Host

Ir -
ForegroundColor Cyan

Write-Host "|| GERENCIADOR DE TAREFAS AGENDADAS || " -ForegroundColor
Cyan

Write-Host
l I n_

ForegroundColor Cyan
Write-Host ™"
Write-Host "1. Criar Tarefa de Backup" -ForegroundColor White
Write-Host "2. Criar Tarefa de Limpeza" -ForegroundColor White
Write-Host "3. Criar Tarefa de Monitoramento" -ForegroundColor White
Write-Host "4. Listar Tarefas Customizadas" -ForegroundColor White
Write-Host "5. Remover Todas as Tarefas" -ForegroundColor White
Write-Host "6. Sair" -ForegroundColor White

Write-Host ""

#Loop do menu
do{
Show-Menu

$opcao = Read-Host "Escolha uma opgao"

switch ($opcao) {
nqn g
New-BackupTask
Read-Host " nPressione Enter para continuar"
}
ngn ¢
New-CleanupTask
Read-Host " nPressione Enter para continuar"
}
n3n g

New-MonitoringTask

Read-Host " nPressione Enter para continuar"
}
nqn g
Get-CustomTasks
Read-Host " nPressione Enter para continuar"
}
ngn ¢
$confirmacao = Read-Host "Tem certeza? (S/N)"
if ($confirmacao -eq 'S') {
Remove-AllCustomTasks

}

Read-Host " nPressione Enter para continuar"
}
6" {
Write-Host "Encerrando..." -ForegroundColor Cyan
}
default {
Write-Host "Opcéao invalida!" -ForegroundColor Red

Start-Sleep -Seconds 2

}
}while ($opcao -ne "6")
Conclusao da Secao 4
Nesta secéo, exploramos em profundidade:
1. Fundamentos de Scripting:
o Estrutura basica de scripts
o Parametros e validagao

o Funcgbdes avancgadas

2. Técnicas Avancadas:
o Tratamento robusto de erros
o Sistema de logging profissional
o Debugging e troubleshooting
3. Tarefas Agendadas:
o Criacao e gerenciamento de tarefas
o Tipos de triggers
o Configuragbes avangadas
o Sistema completo de automacgao

Com essas habilidades, vocé pode criar solugdes de automacao robustas,
confidveis e profissionais que executam tarefas complexas de forma

automatizada e eficiente.

5. ADMINISTRAGAO DE SISTEMAS OPERACIONAIS WINDOWS
5.1 Gerenciamento de Arquivos, Processos e Servigos

5.1.1 Gerenciamento de Arquivos e Diretérios

Navegacao e Listagem

Get-Location (pwd): Obter diretério atual

Get-Location

pwd # Alias

Set-Location (cd): Mudar diretdrio
Set-Location C:\Windows
cd C:\Windows # Alias

sl C:\Windows # Alias

Navegar para diretorio anterior

Set-Location -Path $PSHOME

Voltar ao diretdério home

Set-Location ~

Push-Location e Pop-Location: Pilha de diretdrios
Push-Location C:\Windows

Push-Location C:\Temp

Get-Location # C:\Temp

Pop-Location # Volta para C:\Windows

Pop-Location # Volta para o diretério inicial

Get-Childltem (ls, dir): Listar arquivos e diretorios
Get-Childltem

s #Alias Unix

dir # Alias DOS

gci # Alias PowerShell

Listar com detalhes

Get-Childltem -Force # Incluir ocultos
Get-Childltem -Recurse # Recursivo (subdiretdrios)
Get-Childltem -File # Apenas arquivos

Get-Childltem -Directory # Apenas diretdrios

Filtrar por extensdo
Get-Childltem -Filter *.txt
Get-Childltem -Include *.log, *.txt -Recurse

Get-Childltem -Exclude *tmp

Listar com profundidade especifica

Get-Childltem -Recurse -Depth 2

Listar arquivos ocultos e sistema
Get-Childltem -Force -Attributes Hidden

Get-Childltem -Attributes System

Ordenar resultados

Get-Childltem | Sort-Object Length -Descending
Get-Childltem | Sort-Object LastWriteTime
Criacao de Arquivos e Diretérios

New-Item: Criar arquivos e diretorios

Criar arquivo vazio

New-ltem -Path "arquivo.txt" -ltemType File

Criar arquivo com conteudo

New-ltem -Path "dados.txt" -ltemType File -Value "Conteudo inicial"

Criar diretdrio

New-Iltem -Path "NovaPasta" -ltemType Directory

Criar estrutura de diretorios

New-Iltem -Path "Projeto\Src\Controllers" -ltemType Directory -Force

Criar multiplos arquivos
1..5| ForEach-Object{

New-Item -Path "arquivo$_.txt" -ltemType File

Criar arquivo temporario
$tempFile = New-TemporaryFile

Write-Host "Arquivo temporario: $($tempFile.FullName)"

Mkdir (alias para criar diretdrios)
mkdir "OutraPasta"

md "MaisPasta"

Copia, Movimentacao e Renomeacao

Copy-Item: Copiar arquivos e diretdrios
Copiar arquivo
Copy-ltem -Path "origem.txt" -Destination "destino.txt"

cp origem.txt destino.txt # Alias

Copiar para outro diretdrio

Copy-ltem -Path "arquivo.txt" -Destination "C:\Backup\"

Copiar diretdrio recursivamente

Copy-ltem -Path "Pasta" -Destination "PastaCopia" -Recurse

Copiar multiplos arquivos

Copy-ltem -Path "*txt" -Destination "C:\Documentos\"

Copiar preservando estrutura

Copy-ltem -Path "C:\Projeto*" -Destination "D:\Backup\Projeto\" -Recurse -Force

Copiar com filtro

Get-Childltem -Filter "*.log" | Copy-ltem -Destination "C:\Logs\"

Move-Item: Mover/renomear arquivos

Mover arquivo

Move-ltem -Path "arquivo.txt" -Destination "C:\Destino\"

mv arquivo.txt C:\Destino\ # Alias

Renomear arquivo

Move-ltem -Path "antigo.txt" -Destination "novo.txt"

Mover diretdrio

Move-Item -Path "Pasta" -Destination "C:\NovolLocal\"

Mover com sobrescrita

Move-ltem -Path "arquivo.txt" -Destination "C:\Destino\" -Force

Rename-Item: Renomear especificamente

Renomear arquivo

Rename-ltem -Path "velho.txt" -NewName "novo.txt"

ren velho.txt novo.txt # Alias

Renomear diretorio

Rename-Iltem -Path "PastaAntiga" -NewName "PastaNova"

Renomear multiplos arquivos (adicionar prefixo)

Get-Childltem -Filter "*.txt" | Rename-Item -NewName { "Backup_" + $_.Name }

Renomear multiplos arquivos (trocar extensao)

Get-Childltem -Filter "*.txt" | Rename-ltem -NewName { $_.Name -replace '\.txt$,,
'log'}
Exclusao de Arquivos e Diretérios

Remove-Item: Remover arquivos e diretérios

Remover arquivo
Remove-Item -Path "arquivo.txt"
rm arquivo.txt # Alias Unix

del arquivo.txt #Alias DOS

Remover diretdrio vazio

Remove-ltem -Path "Pasta"

Remover diretério com contetdo

Remove-ltem -Path "Pasta" -Recurse

Remover com confirmacgéo

Remove-Item -Path "arquivo.txt" -Confirm

Remover forcadamente (incluindo readonly)

Remove-Item -Path "arquivo.txt" -Force

Remover multiplos arquivos
Remove-Item -Path "*tmp"

Get-Childltem -Filter "*.log" | Remove-ltem

Simular remocéao (Whatlf)

Remove-Item -Path "Pasta" -Recurse -Whatlf

Remover arquivos antigos
Get-Childltem -Filter "*.log" |
Where-Object { $_.LastWriteTime -lt (Get-Date).AddDays(-30) } |

Remove-ltem

Clear-RecycleBin: Esvaziar lixeira
Clear-RecycleBin -Driveletter C -Force
Clear-RecycleBin -Force # Todas as unidades
Leitura e Escrita de Arquivos

Get-Content: Ler conteudo de arquivo

Ler arquivo completo
Get-Content -Path "arquivo.txt"
cat arquivo.txt # Alias Unix

type arquivo.txt # Alias DOS

Ler com encoding especifico

Get-Content -Path "arquivo.txt" -Encoding UTF8

Ler ultimas N linhas

Get-Content -Path "log.txt" -Tail 10

Ler primeiras N linhas

Get-Content -Path "dados.txt" -TotalCount 5

Ler como stream (linha por linha)

Get-Content -Path "grande.txt" -ReadCount 100

Monitorar arquivo em tempo real (tail -f)

Get-Content -Path "log.txt" -Wait -Tail 10

Ler como bytes

Get-Content -Path "imagem.jpg" -Encoding Byte

Set-Content: Escrever (sobrescrever) arquivo

Escrever texto

Set-Content -Path "arquivo.txt" -Value "Novo conteudo"”

"Texto direto" | Set-Content "arquivo.txt"

Escrever multiplas linhas

Set-Content -Path "lista.txt" -Value @("Linha 1", "Linha 2", "Linha 3")

Escrever com encoding

Set-Content -Path "arquivo.txt" -Value "Contelddo" -Encoding UTF8

Add-Content: Adicionar ao arquivo

Adicionar texto ao final

Add-Content -Path "log.txt" -Value "Nova entrada de log"

"Mais uma linha" | Add-Content "arquivo.txt"

Adicionar timestamp

Add-Content -Path "log.txt" -Value "$(Get-Date) - Evento registrado"

Out-File: Redirecionar saida para arquivo

Escrever saida de comando

Get-Process | Out-File "processos.txt"

Append

Get-Service | Out-File "servicos.txt" -Append

Com encoding

Get-Childltem | Out-File "lista.txt" -Encoding UTF8

Com largura especifica
Get-Process | Out-File "processos.txt" -Width 200
Manipulacao de Conteudo

Select-String: Buscar texto em arquivos (grep)

Buscar padrdo em arquivo

Select-String -Path "log.txt" -Pattern "erro"

Buscar em multiplos arquivos

Select-String -Path "*.txt" -Pattern "senha"

Case-sensitive

Select-String -Path "dados.txt" -Pattern "PowerShell" -CaseSensitive

Buscar com regex

Select-String -Path "log.txt" -Pattern "\d{3\.\d{3\.\d{3}-\d{2}"

Contexto (linhas antes/depois)

Select-String -Path "log.txt" -Pattern "erro" -Context 2,3

Buscar recursivamente

Get-Childltem -Recurse -Filter "*.log" | Select-String -Pattern "falha"

Exibir apenas arquivos que contém o padréo

Select-String -Path "*.txt" -Pattern "importante" -List

Compare-Object: Comparar arquivos

Comparar conteudo de dois arquivos

$arquivo1 = Get-Content "versaol.txt"

$arquivo2 = Get-Content "versao2.txt"

Compare-Object -ReferenceObject $arquivo1 -DifferenceObject $arquivo?2

Mostrar apenas diferencas

Compare-Object $arquivo1 $arquivo2 -PassThru

Incluir linhas iguais

Compare-Object $arquivo1 $arquivo?2 -IncludeEqual

Measure-Object: Estatisticas de arquivo

Contar linhas em arquivo

Get-Content "arquivo.txt" | Measure-Object -Line

Contar palavras e caracteres
Get-Content "documento.txt" | Measure-Object -Word -Character -Line
Atributos e Propriedades de Arquivos

Get-Item e Get-ltemProperty: Obter informacgédes

Obter informacgdes de arquivo
$arquivo = Get-ltem "documento.txt"
$arquivo.Name

$arquivo.Length
$arquivo.CreationTime
$arquivo.LastWriteTime
$arquivo.LastAccessTime
$arquivo.Extension
$arquivo.FullName
$arquivo.Directory

$arquivo.Attributes

Obter propriedades especificas

Get-ltemProperty -Path "arquivo.txt" -Name LastWriteTime

Set-ltemProperty: Modificar propriedades

Tornar arquivo readonly

Set-ltemProperty -Path "importante.txt" -Name IsReadOnly -Value $true

Remover readonly

Set-ltemProperty -Path "importante.txt" -Name IsReadOnly -Value $false

Modificar atributos
Set-ltemProperty -Path "arquivo.txt" -Name Attributes -Value "Hidden"

Set-ltemProperty -Path "arquivo.txt" -Name Attributes -Value "Archive"

Modificar timestamps
$arquivo = Get-ltem "teste.txt"
$arquivo.CreationTime ="2025-01-01"

$arquivo.LastWriteTime = Get-Date

Test-Path: Verificar existéncia

Verificar se arquivo existe

Test-Path "arquivo.txt"

Verificar se diretorio existe

Test-Path "C:\Pasta" -PathType Container

Verificar se é arquivo

Test-Path "documento.ixt" -PathType Leaf

Resolve-Path: Resolver caminho completo

Resolve-Path "\arquivo.txt"

Split-Path: Manipular caminhos
Split-Path "C:\Pasta\arquivo.txt" -Parent # C:\Pasta
Split-Path "C:\Pasta\arquivo.txt" -Leaf # arquivo.txt

Split-Path "C:\Pasta\arquivo.txt" -Extension # .txt

Join-Path: Combinar caminhos
Join-Path "C:\Dados" "arquivo.txt" # C:\Dados\arquivo.txt
Compressao e Descompressao

Compress-Archive: Criar arquivo ZIP

Comprimir arquivo

Compress-Archive -Path "arquivo.txt" -DestinationPath "arquivo.zip"

Comprimir diretdrio

Compress-Archive -Path "Pasta" -DestinationPath "backup.zip"

Comprimir multiplos itens

Compress-Archive -Path "*txt", "*.log" -DestinationPath "arquivos.zip"

Adicionar a arquivo existente

Compress-Archive -Path "novo.txt" -DestinationPath "arquivo.zip" -Update

Nivel de compresséao

Compress-Archive -Path "Dados" -DestinationPath "dados.zip" -CompressionLevel
Optimal

Niveis: Fastest, Optimal, NoCompression

Expand-Archive: Extrair arquivo ZIP

Extrair arquivo

Expand-Archive -Path "arquivo.zip" -DestinationPath "C:\Extraidos"

Extrair sobrescrevendo

Expand-Archive -Path "backup.zip" -DestinationPath "C:\Restore" -Force

Listar conteudo do ZIP (sem extrair)

Add-Type -AssemblyName System.lO.Compression.FileSystem
$zip = [System.l0.Compression.ZipFile]::OpenRead("arquivo.zip")
$zip.Entries | Select-Object Name, Length, CompressedLength
$zip.Dispose()

Exemplo Completo: Sistema de Gerenciamento de Arquivos

Arquivo: GerenciadorArquivos.ps1

<#
.SYNOPSIS
Sistema completo de gerenciamento de arquivos

#>

Funcao para organizar arquivos por extensgo
function Organize-FilesByExtension {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Path,

[switch]$Whatlf

Write-Host " nOrganizando arquivos em: $Path" -ForegroundColor Cyan

$arquivos = Get-Childltem -Path $Path -File

if ($arquivos.Count -eq 0) {
Write-Host "Nenhum arquivo encontrado." -ForegroundColor Yellow

return

$agrupados = $arquivos | Group-Object Extension

foreach ($grupo in $agrupados) {

$extensao = if ($grupo.Name) { $grupo.Name.TrimStart(.) } else {
"SemExtensao" }

$pastaDestino = Join-Path $Path $extensao

if (-not (Test-Path $pastaDestino)) {
Write-Host "Criando pasta: $extensao" -ForegroundColor Yellow
if (-not $Whatlf) {

New-Item -Path $pastaDestino -ltemType Directory | Out-Null

Write-Host "* nMovendo $($grupo.Count) arquivo(s) .$extensao" -
ForegroundColor Green

foreach ($arquivo in $grupo.Group) {
$destino = Join-Path $pastaDestino $arquivo.Name

Write-Host " $($arquivo.Name) > $extensao\" -ForegroundColor Gray

if (-not $Whatlf) {

Move-Iltem -Path $arquivo.FullName -Destination $destino -Force

Write-Host " nOrganizagao concluida!" -ForegroundColor Green

Funcao para encontrar arquivos duplicados
function Find-DuplicateFiles {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Path,

[switch]$Recurse

Write-Host " " nBuscando arquivos duplicados..." -ForegroundColor Cyan

$parametros = @{
Path = $Path
File = $true

}

if (fRecurse) { $parametros.Recurse = $true }

$arquivos = Get-Childltem @parametros

Write-Host "Calculando hashes de $($arquivos.Count) arquivos..." -
ForegroundColor Yellow

$hashes = $arquivos | ForEach-Object {
[PSCustomObject]@{
Path =$_.FullName
Name =% _.Name
Size =$_.Length

Hash = (Get-FileHash -Path $_.FullName -Algorithm MD5).Hash

$duplicados = $hashes | Group-Object Hash | Where-Object Count -gt 1

if ($duplicados.Count -eq 0) {
Write-Host "Nenhum arquivo duplicado encontrado." -ForegroundColor Green

return

Write-Host " nEncontrados $($duplicados.Count) conjuntos de duplicados:" -
ForegroundColor Red

$espacoDesperdicio =0

foreach ($grupo in $duplicados) {

$tamanho = $grupo.Group[0].Size

$espacoDesperdicio += $tamanho * ($grupo.Count - 1)

Write-Host " n[$($grupo.Group[0].Name)] - $($grupo.Count) cépias -
$([math]::Round($tamanho/1MB, 2)) MB" -ForegroundColor Yellow

foreach ($item in $grupo.Group) {

Write-Host " $($item.Path)" -ForegroundColor Gray

Write-Host "" nEspaco desperdigado:
$([math]::Round($espacoDesperdicio/1MB, 2)) MB" -ForegroundColor Red

return $duplicados

Funcéo para limpar arquivos temporarios
function Clear-TemporaryfFiles {
param(
[int]$DaysOld = 7,

[switch]$Whatlf

$caminhos = @(
$env:TEMP,
"C:\Windows\Temp",

"C:\Windows\Prefetch"

$dataLimite = (Get-Date).AddDays(-$DaysOld)
$totalRemovido =0

$espacoliberado =0

Write-Host " nLimpando arquivos temporarios com mais de $DaysOld dias..." -
ForegroundColor Cyan

foreach ($caminho in $caminhos) {
if (-not (Test-Path $caminho)) {

continue

Write-Host " nVerificando: $caminho" -ForegroundColor Yellow

try {

$arquivos = Get-Childltem -Path $caminho -File -Recurse -ErrorAction
SilentlyContinue |

Where-Object { $_.LastWriteTime -lt $dataLimite }

foreach ($arquivo in $arquivos) {

try{

$tamanho = $arquivo.Length

Write-Host " Removendo: $($arquivo.Name)" -ForegroundColor Gray

if (-not $Whatlf) {

Remove-ltem -Path $arquivo.FullName -Force -ErrorAction Stop
$totalRemovido++

$espacoliberado += $tamanho

}

catch{

Write-Host " Erro ao remover: $($arquivo.Name)" -ForegroundColor Red

}

catch{

Write-Host "Erro ao acessar: $caminho" -ForegroundColor Red

Write-Host "™ nLimpeza concluida!" -ForegroundColor Green
Write-Host "Arquivos removidos: $totalRemovido" -ForegroundColor Cyan

Write-Host "Espaco liberado: $([math]::Round($espacoLiberado/1MB, 2)) MB" -
ForegroundColor Cyan

}

Funcao para criar relatorio de uso de disco
function Get-DiskUsageReport {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Path,

[int]$TopN =20

Write-Host " nAnalisando uso de disco em: $Path" -ForegroundColor Cyan

$diretorios = Get-Childltem -Path $Path -Directory -ErrorAction SilentlyContinue

$relatorio = @()

foreach ($dir in $diretorios) {

Write-Host "Calculando: $($dir.Name)..." -ForegroundColor Gray

try {

$tamanho = (Get-Childltem -Path $dir.FullName -Recurse -File -ErrorAction
SilentlyContinue |

Measure-Object -Property Length -Sum).Sum

$quantidade = (Get-Childltem -Path $dir.FullName -Recurse -File -

ErrorAction SilentlyContinue |

Measure-Object).Count

$relatorio += [PSCustomObject]@{
Diretorio = $dir.Name
TamanhoMB = [math]::Round($tamanho / 1MB, 2)
TamanhoGB = [math]::Round($tamanho / 1GB, 2)

Arquivos = $quantidade

}
catch{

Write-Host "Erro ao processar: $($dir.Name)" -ForegroundColor Red

$relatorio = $relatorio | Sort-Object TamanhoMB -Descending | Select-Object -
First $TopN

Write-Host " nTop $TopN diretérios por tamanho:" -ForegroundColor Green

$relatorio | Format-Table -AutoSize

$totalGB = ($relatorio | Measure-Object -Property TamanhoGB -Sum).Sum

Write-Host "Total: $([math]::Round($totalGB, 2)) GB" -ForegroundColor Cyan

return $relatorio

Funcao para fazer backup inteligente
function New-SmartBackup {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Source,

[Parameter(Mandatory=$true)]

[string]$Destination,

[int]$KeepBackups =7,

[string[]]$ExcludeExtensions = @("*.tmp", "*.temp", "*.cache")

Write-Host "™ n=== BACKUP INTELIGENTE ===" -ForegroundColor Cyan

Write-Host "Origem: $Source" -ForegroundColor Yellow

Write-Host "Destino: $Destination" -ForegroundColor Yellow

Criar diretdrio de destino

if (-not (Test-Path $Destination)) {

New-Item -Path $Destination -ltemType Directory -Force | Out-Null

Nome do backup
$timestamp = Get-Date -Format "yyyyMMdd_HHmmss"
$backupName = "Backup_$timestamp"

$backupPath = Join-Path $Destination $backupName

Write-Host " nColetando arquivos..." -ForegroundColor Yellow

Obter arquivos (excluir extensdes especificadas)

$arquivos = Get-Childltem -Path $Source -Recurse -File

foreach ($extensao in $ExcludeExtensions) {

$arquivos = $arquivos | Where-Object { $_.Name -notlike $extensao }

Write-Host "Arquivos a fazer backup: $($arquivos.Count)" -ForegroundColor
Cyan

$tamanhoTotal = ($arquivos | Measure-Object -Property Length -Sum).Sum

Write-Host "Tamanho total: $([math]::Round($tamanhoTotal/1MB, 2)) MB" -
ForegroundColor Cyan

Criar backup compactado

Write-Host " nCriando arquivo de backup..." -ForegroundColor Yellow

try {

Compress-Archive -Path $Source -DestinationPath "$backupPath.zip" -

CompressionLevel Optimal

$backupFile = Get-ltem "$backupPath.zip"

$compressao = [math]::Round(($backupFile.Length / $tamanhoTotal) * 100, 2)

Write-Host "Backup criado com sucesso!" -ForegroundColor Green
Write-Host "Arquivo: $backupName.zip" -ForegroundColor Cyan

Write-Host "Tamanho compactado:

$([math]::Round($backupFile.Length/1MB, 2)) MB" -ForegroundColor Cyan

Write-Host "Taxa de compresséo: $compressao%" -ForegroundColor Cyan

Limpar backups antigos

Write-Host " nLimpando backups antigos..." -ForegroundColor Yellow

$backupsAntigos = Get-Childltem -Path $Destination -Filter "Backup_*.zip" |
Sort-Object CreationTime -Descending |

Select-Object -Skip $KeepBackups

foreach ($backup in $backupsAntigos) {
Remove-ltem -Path $backup.FullName -Force

Write-Host "Removido: $($backup.Name)" -ForegroundColor Gray

Write-Host " " nBackup concluido com sucesso!" -ForegroundColor Green

catch{

Write-Host "Erro ao criar backup: $_" -ForegroundColor Red

return $false

return $true

Menu principal
function Show-FileManagementMenu {
do{
Clear-Host

Write-Host

Ir -
ForegroundColor Cyan

Write-Host "|| SISTEMA DE GERENCIAMENTO ARQUIVOS ||" -
ForegroundColor Cyan

Write-Host
u L | w_

ForegroundColor Cyan
Write-Host ""
Write-Host "1. Organizar arquivos por extensao" -ForegroundColor White
Write-Host "2. Encontrar arquivos duplicados" -ForegroundColor White
Write-Host "3. Limpar arquivos temporarios" -ForegroundColor White
Write-Host "4. Relatério de uso de disco" -ForegroundColor White
Write-Host "5. Criar backup inteligente" -ForegroundColor White
Write-Host "6. Sair" -ForegroundColor White

Write-Host "

$opcao = Read-Host "Escolha uma opgéo"

switch ($opcao) {

" g

$caminho = Read-Host "Digite o caminho do diretério"
if (Test-Path $caminho) {
Organize-FilesByExtension -Path $caminho
}else{
Write-Host "Caminho néo existe!" -ForegroundColor Red

}

Read-Host " nPressione Enter para continuar"
}
ngn g
$caminho = Read-Host "Digite o caminho do diretério"
if (Test-Path $caminho) {
$recurse = Read-Host "Buscar recursivamente? (S/N)"
if (frecurse -eq'S'") {
Find-DuplicateFiles -Path $caminho -Recurse
} else{

Find-DuplicateFiles -Path $caminho

}

Read-Host " nPressione Enter para continuar"
}
||3II{

$dias = Read-Host "Remover arquivos com mais de quantos dias? (padrao:
7)"

if ([string]::IsNullOrWhiteSpace($dias)) { $dias = 7 }
Clear-TemporaryFiles -DaysOld $dias
Read-Host " nPressione Enter para continuar"

}
gy

$caminho = Read-Host "Digite o caminho do diretério"
if (Test-Path $caminho) {
Get-DiskUsageReport -Path $caminho
}
Read-Host " nPressione Enter para continuar"
}
ngn ¢
$origem = Read-Host "Caminho de origem"
$destino = Read-Host "Caminho de destino"
if (Test-Path $origem) {
New-SmartBackup -Source $origem -Destination $destino

}

Read-Host " nPressione Enter para continuar"

}

} while ($opcao -ne "6")

Executar menu
Show-FileManagementMenu

5.1.2 Gerenciamento de Processos
Listar e Consultar Processos

Get-Process: Obter processos em execucao

Listar todos os processos
Get-Process

ps #Alias

Processo especifico
Get-Process -Name notepad

Get-Process -Id 1234

Multiplos processos

Get-Process -Name chrome, firefox, edge

Com wildcard

Get-Process -Name *office*

Ordenar por uso de CPU

Get-Process | Sort-Object CPU -Descending | Select-Object -First 10

Ordenar por uso de memoria

Get-Process | Sort-Object WorkingSet -Descending | Select-Object -First 10

Filtrar processos
Get-Process | Where-Object { $_.CPU -gt 100 }

Get-Process | Where-Object { $_.WorkingSet -gt 100MB }

Propriedades importantes

$processo = Get-Process -Name powershell | Select-Object -First 1
$processo.ld # 1D do processo

$processo.ProcessName # Nome do processo

$processo.CPU # Tempo de CPU (segundos)
$processo.WorkingSet # Memdria fisica (bytes)
$processo.VirtualMemorySize # Memdria virtual

$processo.Threads.Count # Numero de threads

$processo.StartTime # Hora de inicio
$processo.Path # Caminho do executavel
$processo.Company # Empresa desenvolvedora

$processo.MainWindowTitle # Titulo da janela principal

Informacgdes detalhadas

Get-Process -Name chrome | Format-List *
Get-Process -Name chrome | Get-Member
Iniciar Processos

Start-Process: Iniciar novo processo

Iniciar aplicagcdo simples

Start-Process notepad

Iniciar com argumentos

Start-Process notepad -ArgumentList "C:\teste.txt

Iniciar como administrador

Start-Process powershell -Verb RunAs

Iniciar e aguardar concluséao

Start-Process notepad -Wait

Iniciar minimizado

Start-Process calc -WindowStyle Minimized

Iniciar maximizado

Start-Process explorer -WindowStyle Maximized

Iniciar oculto

Start-Process powershell -ArgumentList "-File C:\script.ps1" -WindowStyle Hidden

Redirecionar saida

Start-Process ping -ArgumentList "8.8.8.8" -RedirectStandardOutput
"resultado.txt" -NoNewWindow

Iniciar com credenciais especificas
$cred = Get-Credential

Start-Process notepad -Credential $cred

Capturar objeto Process
$proc = Start-Process notepad -PassThru
$proc.Id

$proc.WaitForExit()

Exemplos praticos

Abrir URL no navegador padrdo

Start-Process "https://www.google.com"

Abrir arquivo com aplicagédo padrdo

Start-Process "documento.pdf"

Executar comando no CMD

Start-Process cmd -ArgumentList "/c ipconfig /all" -WindowStyle Hidden

Executar script PowerShell em nova janela

Start-Process powershell -ArgumentList "-File C:\Scripts\monitor.ps1" -
WindowStyle Normal

Parar Processos

Stop-Process: Encerrar processo

Por nome

Stop-Process -Name notepad

Por ID

Stop-Process -Id 1234

Forcar encerramento

Stop-Process -Name chrome -Force

Multiplos processos

Stop-Process -Name notepad, wordpad

Com confirmacéo

Stop-Process -Name excel -Confirm

Simular (Whatlf)

Stop-Process -Name chrome -Whatlf

Parar todos os processos com um padrao

Get-Process -Name *office* | Stop-Process -Force

Parar processos usando muita CPU

Get-Process | Where-Object { $_.CPU -gt 1000 } | Stop-Process -Force

Parar processos usando muita memoria

Get-Process | Where-Object { $_.WorkingSet -gt 500MB } | Stop-Process

Usar método Kill() do objeto
$processo = Get-Process -Name notepad

$processo.Kill()

Parar processo com timeout
$processo = Get-Process -Name chrome | Select-Object -First 1
$processo.CloseMainWindow()
Start-Sleep -Seconds 5
if (-not $processo.HasExited) {
$processo.Kill()
}
Aguardar Processos

Wait-Process: Aguardar encerramento

Aguardar processo terminar

Wait-Process -Name notepad

Aguardar com timeout

Wait-Process -Name chrome -Timeout 30

Aguardar multiplos processos

Wait-Process -Name excel, word

Aguardar por ID
$proc = Start-Process notepad -PassThru

Wait-Process -Id $proc.Id

Exemplo: executar e aguardar

$processo = Start-Process powershell -ArgumentList "-File C:\script.ps1" -
PassThru

Wait-Process -Id $processo.ld

Write-Host "Processo finalizado com cdédigo: $($processo.ExitCode)"
Monitoramento de Processos

Debug-Process: Anexar debugger

Debug-Process -Name notepad

Prioridade de processos

$processo = Get-Process -Name notepad | Select-Object -First 1

Ver prioridade atual

$processo.PriorityClass

Alterar prioridade
$processo.PriorityClass = "High"

Valores: Idle, BelowNormal, Normal, AboveNormal, High, RealTime
Mddulos carregados pelo processo
$processo = Get-Process -Name powershell | Select-Object -First 1

$processo.Modules | Select-Object ModuleName, FileName

Threads do processo

$processo.Threads | Select-Object Id, ThreadState, TotalProcessorTime
Exemplo Completo: Monitor de Processos

Arquivo: MonitorProcessos.ps1

<#
.SYNOPSIS
Sistema de monitoramento e gerenciamento de processos

#>

Funcdo para obter top processos
function Get-TopProcesses {
param(
[ValidateSet("CPU", "Memory", "Threads")]
[string]$SortBy = "Memory",

[int]$Top =10

$processos = Get-Process

switch ($SortBy) {

"CPU"{
$sorted = $processos | Sort-Object CPU -Descending
$label ="CPU Time (s)"
$property ="CPU"

}

"Memory" {
$sorted = $processos | Sort-Object WorkingSet -Descending

$label = "Memory (MB)"

$property = "WorkingSet"

}

"Threads" {
$sorted = $processos | Sort-Object {$_.Threads.Count} -Descending
$label = "Threads"

$property = @{Name="Threads"; Expression={$_.Threads.Count}}

Write-Host " nTop $Top Processos por $SortBy :" -ForegroundColor Cyan

$sorted | Select-Object -First $Top |
Select-Object Name, Id,
@{Name=$label; Expression={

if ($SortBy -eq "Memory"){
[math]::Round($_.$property / 1MB, 2)

} elseif ($SortBy -eq "CPU") {
[math]::Round($_.$property, 2)

}else{

$_Threads.Count

}
e

Format-Table -AutoSize

Funcéo para monitorar processo especifico
function Watch-Process {

param(

[Parameter(Mandatory=$true)]
[string]$ProcessName,
[int]$IntervalSeconds =5,

[int]$Duration = 60

$inicio = Get-Date

$limiteTempoWrite-Host " nMonitorando processo: $ProcessName" -
ForegroundColor Cyan

Write-Host "Duragao: $Duration segundos | Intervalo: $IntervalSeconds
segundos™ n" -ForegroundColor Yellow

$medicoes = @()

while (((Get-Date) - $inicio).TotalSeconds -t $Duration) {

$processo = Get-Process -Name $ProcessName -ErrorAction SilentlyContinue

if ($processo) {
$medicao = [PSCustomObject]@{
Timestamp = Get-Date -Format "HH:mm:ss"
CPU =[math]::Round($processo.CPU, 2)
MemoryMB =[math]::Round($processo.WorkingSet/ 1MB, 2)
Threads = $processo.Threads.Count

Handles = $processo.HandleCount

$medicoes += $medicao

Write-Host "[$($medicao.Timestamp)] CPU: $($medicao.CPU)s | Memdria:
$($medicao.MemoryMB) MB | Threads: $($medicao.Threads)" -ForegroundColor
Green

}else{
Write-Host "Processo nao esta em execugao" -ForegroundColor Red

break

Start-Sleep -Seconds $IntervalSeconds

if ($medicoes.Count -gt 0) {
Write-Host " n=== ESTATISTICAS ===" -ForegroundColor Cyan

Write-Host "CPU Média: $([math]::Round(($medicoes.CPU | Measure-Object -
Average).Average, 2))s" -ForegroundColor Yellow

Write-Host "CPU Maxima: $([math]::Round(($medicoes.CPU | Measure-Object
-Maximum).Maximum, 2))s" -ForegroundColor Yellow

Write-Host "Memaria Média: $([math]::Round(($medicoes.MemoryMB |
Measure-Object -Average).Average, 2)) MB" -ForegroundColor Yellow

Write-Host "Memadria Maxima: $([math]::Round(($medicoes.MemoryMB |
Measure-Object -Maximum).Maximum, 2)) MB" -ForegroundColor Yellow

}

Funcéo para encerrar processos problematicos
function Stop-ProblematicProcesses {
param(
[int]$CPUThreshold = 90,
[int}]$MemoryThresholdMB = 1000,

[switch]$Whatlf

Write-Host """ nBuscando processos problematicos..." -ForegroundColor Yellow

Write-Host "Limites: CPU > $CPUThreshold s | Memoria > $MemoryThresholdMB
MB™ n" -ForegroundColor Gray

$processos = Get-Process | Where-Object {

$_.CPU -gt $CPUThreshold -or ($_.WorkingSet / 1MB) -gt
$MemoryThresholdMB

}

if ($processos.Count -eq 0) {

Write-Host "Nenhum processo problematico encontrado.” -ForegroundColor
Green

return

Write-Host "Encontrados $($processos.Count) processo(s) problematico(s):" -
ForegroundColor Red

foreach ($proc in $processos) {
$cpu = [math]::Round($proc.CPU, 2)

$mem = [math]::Round($proc.WorkingSet / 1MB, 2)

Write-Host " n[$($proc.Name)] PID: $($proc.ld)" -ForegroundColor Yellow

Write-Host " CPU: $cpu s | Memoéria: $mem MB" -ForegroundColor Cyan

if (-not $Whatlf) {

$confirmacao = Read-Host "Encerrar este processo? (S/N)"

if ($confirmacao -eq 'S' -or $confirmacao -eq's') {
try {
Stop-Process -Id $proc.Id -Force
Write-Host" v Processo encerrado" -ForegroundColor Green

} catch{

Write-Host" X Erro ao encerrar: $_" -ForegroundColor Red

}

}else{

Write-Host " [Whatlf] Processo seria encerrado" -ForegroundColor Gray

Funcao para gerar relatdrio de processos
function Export-ProcessReport {
param(

[string]$OutputPath = "\ProcessReport_$(Get-Date -Format
'vyyyyMMdd_HHmmss').csv"

)

Write-Host " " nGerando relatdério de processos..." -ForegroundColor Yellow

$processos = Get-Process | Select-Object Name, Id,
@{Name='Company'; Expression={$_.Company}},
@{Name='CPU_Seconds'; Expression={[math]::Round($_.CPU, 2)}},
@{Name='Memory_MB'; Expression={[math]::Round($_.WorkingSet / 1MB, 2)}},

@{Name='Threads'; Expression={$_.Threads.Count}},

@{Name='Handles'; Expression={$_.HandleCount}},
@{Name='StartTime'; Expression={$_.StartTime}},

@{Name='Path'; Expression={$_.Path}}

$processos | Export-Csv -Path $OutputPath -NoTypelnformation

Write-Host "Relatério salvo em: $OutputPath” -ForegroundColor Green

Write-Host "Total de processos: $($processos.Count)" -ForegroundColor Cyan

Menu principal
function Show-ProcessMenu {
do{
Clear-Host

Write-Host

Ir -
ForegroundColor Cyan

Write-Host "|| GERENCIADOR DE PROCESSOS || " -ForegroundColor
Cyan

Write-Host
ul I _

ForegroundColor Cyan
Write-Host "
Write-Host "1. Top Processos (CPU)" -ForegroundColor White
Write-Host "2. Top Processos (Memoria)" -ForegroundColor White
Write-Host "3. Monitorar Processo Especifico" -ForegroundColor White
Write-Host "4. Encerrar Processos Problematicos" -ForegroundColor White
Write-Host "5. Exportar Relatério" -ForegroundColor White
Write-Host "6. Sair" -ForegroundColor White

Write-Host "

$opcao = Read-Host "Escolha uma opgéo"

switch ($opcao) {
nqn g
Get-TopProcesses -SortBy CPU
Read-Host " nPressione Enter para continuar"
}
ngn g
Get-TopProcesses -SortBy Memory
Read-Host " nPressione Enter para continuar"
}
"3 g
$nome = Read-Host "Nome do processo"
$duracao = Read-Host "Duracgéo (segundos)"
Watch-Process -ProcessName $nome -Duration $duracao
Read-Host " nPressione Enter para continuar"
}
nan g
Stop-ProblematicProcesses
Read-Host " nPressione Enter para continuar"
}
ngn ¢
Export-ProcessReport

Read-Host " nPressione Enter para continuar"

}

} while ($opcao -ne "6")

Executar menu
Show-ProcessMenu

5.1.3 Gerenciamento de Servicos
Listar e Consultar Servigcos

Get-Service: Obter servicos

Listar todos os servigos

Get-Service

Servico especifico

Get-Service -Name wuauserv

Multiplos servicos

Get-Service -Name wuauseryv, spooler, BITS

Com wildcard

Get-Service -Name *audio*

Filtrar por status
Get-Service | Where-Object Status -eq 'Running'

Get-Service | Where-Object Status -eq 'Stopped'

Servicos com dependéncias
Get-Service -Name w32time -RequiredServices # Servicos dos quais depende

Get-Service -Name w32time -DependentServices # Servicos que dependem dele

Propriedades importantes

$servico = Get-Service -Name wuauserv
$servico.Name # Nome do servigco
$servico.DisplayName # Nome de exibigcdo
$servico.Status # Status (Running, Stopped, etc)
$servico.StartType # Tipo de inicializagdo
$servico.ServiceType # Tipo de servigo
$servico.CanStop # Pode ser parado?

$servico.CanPauseAndContinue # Pode ser pausado?

Informacédes detalhadas (WMI/CIM)
Get-Cimlnstance -ClassName Win32_Service -Filter "Name='wuauserv' |

Select-Object Name, DisplayName, State, StartMode, PathName, StartName

Servicos agrupados por status

Get-Service | Group-Object Status

Servicos ordenados
Get-Service | Sort-Object DisplayName
Controlar Servicos

Start-Service: Iniciar servico

Iniciar servigco

Start-Service -Name wuauserv

Iniciar com passthru

Start-Service -Name spooler -PassThru

Iniciar e aguardar

Start-Service -Name BITS

Get-Service -Name BITS | Wait-Service -Status Running

Stop-Service: Parar servico

Parar servigo

Stop-Service -Name wuauserv

Parar forcadamente

Stop-Service -Name spooler -Force

Parar sem confirmacéo

Stop-Service -Name BITS -Force -NoWait

Restart-Service: Reiniciar servigo

Reiniciar servico

Restart-Service -Name wuauserv

Reiniciar forcadamente

Restart-Service -Name spooler -Force

Suspend-Service e Resume-Service: Pausar/Retomar

Pausar servico (se suportado)

Suspend-Service -Name wuauserv

Retomar servico

Resume-Service -Name wuauserv

Set-Service: Modificar propriedades

Alterar tipo de inicializagcdo
Set-Service -Name wuauserv -StartupType Automatic
Set-Service -Name wuauserv -StartupType Manual

Set-Service -Name wuauserv -Startuplype Disabled

Alterar descricéo

Set-Service -Name MeuServico -Description "Descrigcédo personalizada

Alterar DisplayName

Set-Service -Name MeuServico -DisplayName "Meu Servico Custom”

Alterar credenciais de execugédo

$cred = Get-Credential

Set-Service -Name MeuServico -Credential $cred
Criar e Remover Servigos

New-Service: Criar novo servico

Criar servico simples

New-Service -Name "MeuServico" °
-BinaryPathName "C:\Scripts\meuservico.exe" °
-DisplayName "Meu Servigo" °
-Description "Descricao do servigo" °

-StartupType Automatic

Criar com dependéncias
New-Service -Name "MeuServico"
-BinaryPathName "C:\Scripts\servico.exe" °

-DependsOn "EventLog", "PlugPlay"

Criar com credenciais especificas
New-Service -Name "MeuServico" °

-BinaryPathName "C:\Scripts\servico.exe

-Credential (Get-Credential)

Remove-Service: Remover servico (PS 6.0+)

Remove-Service -Name "MeuServico"

Em versoOes antigas, usar sc.exe
sc.exe delete MeuServico
Exemplo Completo: Gerenciador de Servigcos

Arquivo: GerenciadorServicos.ps1

<#
.SYNOPSIS
Sistema completo de gerenciamento de servigos

#>

Funcéo para obter status de servigos criticos
function Get-CriticalServicesStatus {
$servicosCriticos = @(

"wuauserv", # Windows Update

"BITS", # Background Intelligent Transfer
"Spooler", # Print Spooler

"EventLog", #EventLog

"WinRM", # Windows Remote Management
"W32Time", # Windows Time

"Dnscache", # DNS Client

"LanmanServer", # Server

"LanmanWorkstation" # Workstation

Write-Host " n=== STATUS DE SERVICOS CRITICOS ===" -ForegroundColor Cyan

$status = foreach ($servico in $servicosCriticos) {

$svc = Get-Service -Name $servico -ErrorAction SilentlyContinue

if ($sve) {
[PSCustomObject]@{
Nome = $svc.DisplayName
Status = $svc.Status
Inicializagcéo = $svc.StartType

Alerta = if ($svc.Status -ne 'Running' -and $svc.StartType -eq 'Automatic') {
n ! ll}else{ll\/ll}

}

$status | Format-Table -AutoSize

$alertas = $status | Where-Object Alerta-eq" 4. "
if (Palertas) {

Write-Host "~ nATENCAO: $($alertas.Count) servico(s) com problema!" -
ForegroundColor Red

}else{

Write-Host " nTodos os servigos criticos estdo OK!" -ForegroundColor Green

Funcéo para iniciar servigos parados (automaticos)
function Start-StoppedAutomaticServices {

param([switch]$Whatlf)

Write-Host "" nBuscando servigos automaticos parados..." -ForegroundColor

Yellow

$servicosParados = Get-Service | Where-Object {

$_.Status -eq 'Stopped' -and $_.StartType -eq 'Automatic’

if ($servicosParados.Count -eq 0) {

Write-Host "Todos os servicos automaticos estdo em execugao." -
ForegroundColor Green

return

Write-Host "Encontrados $($servicosParados.Count) servigo(s) parado(s): " n
ForegroundColor Cyan

foreach ($servico in $servicosParados) {

Write-Host "[$($servico.DisplayName)]" -ForegroundColor Yellow

if (SWhatlf) {
Write-Host " [Whatlf] Seria iniciado" -ForegroundColor Gray
}else{
try {
Start-Service -Name $servico.Name -ErrorAction Stop
Write-Host" v Iniciado com sucesso" -ForegroundColor Green

} catch {

Write-Host" X Erro: $_" -ForegroundColor Red

Funcao para monitorar servico
function Watch-ServiceStatus {
param(
[Parameter(Mandatory=$true)]
[string]$ServiceName,
[int]$IntervalSeconds =5,

[int]$Duration = 60

$inicio = Get-Date

Write-Host " " nMonitorando servigo: $ServiceName" -ForegroundColor Cyan

Write-Host "Duragao: $Duration segundos | Intervalo: $IntervalSeconds
segundos™ n" -ForegroundColor Yellow

$mudancas = @()

$statusAnterior = $null

while (((Get-Date) - $inicio).TotalSeconds -t $Duration) {

$servico = Get-Service -Name $ServiceName -ErrorAction SilentlyContinue

if ($servico) {

$timestamp = Get-Date -Format "HH:mm:ss"

if ($statusAnterior -and $servico.Status -ne $statusAnterior) {
$mudanca = [PSCustomObject]@{
Timestamp = $timestamp
StatusAnterior = $statusAnterior
StatusNovo = $servico.Status

}

$mudancas += $mudanca

Write-Host "[$timestamp] MUDANCA: $statusAnterior >
$($servico.Status)" -ForegroundColor Red

} else{
$cor = if ($servico.Status -eq 'Running') { 'Green' } else { 'Yellow' }

Write-Host "[$timestamp] Status: $($servico.Status)" -ForegroundColor
$cor

$statusAnterior = $servico.Status

}else{

Write-Host "Servigo ndo encontrado: $ServiceName" -ForegroundColor Red

break

Start-Sleep -Seconds $IntervalSeconds

if ($mudancas.Count -gt 0) {
Write-Host "" n=== MUDANCAS DETECTADAS ===" -ForegroundColor Cyan
$mudancas | Format-Table -AutoSize

}else{

Write-Host " nNenhuma mudanca de status detectada." -ForegroundColor
Green

}

Funcao para restart seguro de servicos
function Restart-ServiceSafely {
param(
[Parameter(Mandatory=$true)]
[string]$ServiceName,

[int]$TimeoutSeconds = 30

Write-Host " nReiniciando servigo: $ServiceName" -ForegroundColor Yellow

$servico = Get-Service -Name $ServiceName -ErrorAction SilentlyContinue

if (-not $servico) {
Write-Host "Servigco ndo encontrado!" -ForegroundColor Red

return $false

Write-Host "Status atual: $($servico.Status)" -ForegroundColor Cyan

Verificar dependéncias
$dependentes = Get-Service -Name $ServiceName -DependentServices |

Where-Object Status -eq 'Running'

if (fdependentes) {

Write-Host " nAVISO: Os seguintes servigos dependem de $ServiceName :" -
ForegroundColor Yellow

$dependentes | ForEach-Object { Write-Host " - $($_.DisplayName)" -
ForegroundColor Gray }

$confirmacao = Read-Host "" nContinuar? (S/N)"
if ($confirmacao -ne 'S' -and $confirmacao -ne's') {
Write-Host "Operacédo cancelada." -ForegroundColor Yellow

return $false

try {

Parar servigo
Write-Host "Parando servigo..." -ForegroundColor Yellow

Stop-Service -Name $ServiceName -Force -ErrorAction Stop

Aguardar parar

$servico.WaitForStatus('Stopped,,
[TimeSpan]::FromSeconds($TimeoutSeconds))

Write-Host "v Servigo parado" -ForegroundColor Green

Aguardar um pouco

Start-Sleep -Seconds 2

Iniciar servigco
Write-Host "Iniciando servigo..." -ForegroundColor Yellow

Start-Service -Name $ServiceName -ErrorAction Stop

Aguardar iniciar

$servico.WaitForStatus('Running,,
[TimeSpan]::FromSeconds($TimeoutSeconds))

Write-Host "v Servigo iniciado" -ForegroundColor Green

Verificar status final
$servico.Refresh()

Write-Host " nStatus final: $($servico.Status)" -ForegroundColor Cyan

return $true

}

catch{

Write-Host " X Erro ao reiniciar servigo: $_" -ForegroundColor Red

return $false

Funcdo para exportar configuracao de servicos
function Export-ServicesConfiguration {
param(

[string]$OutputPath = "\ServicesConfig_$(Get-Date -Format
'yyyyMMdd_HHmMmess').csv"

)

Write-Host " nExportando configuragao de servicos..." -ForegroundColor Yellow

$servicos = Get-Cimlnstance -ClassName Win32_Service |

Select-Object Name, DisplayName, State, StartMode, PathName, StartName,
Description

$servicos | Export-Csv -Path $OutputPath -NoTypelnformation

Write-Host "Configuragéo exportada para: $OutputPath" -ForegroundColor
Green

Write-Host "Total de servigos: $($servicos.Count)" -ForegroundColor Cyan

Funcdo para comparar configuragcdes de servicos
function Compare-ServicesConfiguration {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$BaselineFile

Write-Host "* nComparando configuracao atual com baseline..." -
ForegroundColor Yellow

Carregar baseline

$baseline = Import-Csv -Path $BaselineFile

Obter configuracéo atual
$atual = Get-Ciminstance -ClassName Win32_Service |

Select-Object Name, DisplayName, State, StartMode

$diferencas = @()

foreach ($svcBaseline in $baseline) {

$svcAtual = $atual | Where-Object Name -eq $svcBaseline.Name

if (-not $svcAtual) {
$diferencas += [PSCustomObject]@{
Servico = $svcBaseline.Name
Tipo ="Removido"
Baseline = "Existia"

Atual = "Nao existe"

}

elseif ($svcAtual.State -ne $svcBaseline.State) {
$diferencas += [PSCustomObject]@{
Servico = $svcBaseline.DisplayName
Tipo = "Status"

Baseline = $svcBaseline.State

Atual = $svcAtual.State

}

elseif ($svcAtual.StartMode -ne $svcBaseline.StartMode) {
$diferencas += [PSCustomObject]@{
Servico = $svcBaseline.DisplayName
Tipo ="Inicializagao"
Baseline = $svcBaseline.StartMode

Atual = $svcAtual.StartMode

Verificar novos servicos
foreach ($svcAtual in $atual) {
if (-not ($baseline | Where-Object Name -eq $svcAtual.Name)) {
$diferencas += [PSCustomObject]@{
Servico = $svcAtual.Name
Tipo ="Novo"
Baseline = "N&o existia"

Atual = "Existe"

if ($diferencas.Count -eq 0) {

Write-Host "Nenhuma diferenca encontrada!" -ForegroundColor Green

}else{

Write-Host "* nEncontradas $($diferencas.Count) diferencga(s):" -
ForegroundColor Red

$diferencas | Format-Table -AutoSize

return $diferencas

Menu principal
function Show-ServiceMenu {
do{
Clear-Host

Write-Host

Ir -
ForegroundColor Cyan

Write-Host "|| GERENCIADOR DE SERVIGOS || " -ForegroundColor Cyan

Write-Host
u L | w_

ForegroundColor Cyan
Write-Host ""
Write-Host "1. Status de Servigos Criticos" -ForegroundColor White
Write-Host "2. Iniciar Servigos Automaticos Parados" -ForegroundColor White
Write-Host "3. Monitorar Servigo" -ForegroundColor White
Write-Host "4. Reiniciar Servico com Seguranga" -ForegroundColor White
Write-Host "5. Exportar Configuragao" -ForegroundColor White
Write-Host "6. Comparar com Baseline" -ForegroundColor White
Write-Host "7. Sair" -ForegroundColor White

Write-Host "

$opcao = Read-Host "Escolha uma opgéo"

switch ($opcao) {
nqn g
Get-CriticalServicesStatus
Read-Host " nPressione Enter para continuar"
}
ngn g
Start-StoppedAutomaticServices
Read-Host " nPressione Enter para continuar"
}
"3 g
$nome = Read-Host "Nome do servigo"
$duracao = Read-Host "Duracgéo (segundos)"
Watch-ServiceStatus -ServiceName $nome -Duration $duracao
Read-Host " nPressione Enter para continuar"
}
nan g
$nome = Read-Host "Nome do servigo"
Restart-ServiceSafely -ServiceName $nome
Read-Host " nPressione Enter para continuar"
}
ngn ¢
Export-ServicesConfiguration
Read-Host " nPressione Enter para continuar"
}
"6" {
$arquivo = Read-Host "Caminho do arquivo baseline"

if (Test-Path $arquivo) {

Compare-ServicesConfiguration -BaselineFile $arquivo
}else{

Write-Host "Arquivo ndo encontrado!" -ForegroundColor Red

}
Read-Host " nPressione Enter para continuar"
}
}
} while ($opcao -ne "7")
}
Executar menu

Show-ServiceMenu

5.2 Acesso Remoto e Gerenciamento de Multiplos Computadores
5.2.1 PowerShell Remoting - Fundamentos

O que é PowerShell Remoting?

PowerShell Remoting permite executar comandos e scripts em computadores
remotos de forma segura e eficiente. Baseia-se no protocolo WS-
Management (Web Services for Management) e usa WinRM (Windows Remote
Management).

Caracteristicas:
e Comunicacao criptografada por padréo
e Autenticacdo integrada ao Windows
e Suporte a sessdes persistentes
e Execucdo em multiplos computadores simultaneamente
e Funciona através de firewalls corporativos
Portas utilizadas:
e 5985: HTTP (WinRM)
e 5986: HTTPS (WinRM-HTTPS)

Habilitar PowerShell Remoting

No computador de destino (servidor)

Executar como Administrador

Habilitar Remoting (configuragéo rapida)

Enable-PSRemoting -Force

O que o comando faz:

1. Inicia o servico WinRM

2. Define WinRM para inicializagcdo automatica
3. Cria regras de firewall

4. Registra configuracoes de sessdo

Verificar configuragéo

Get-PSSessionConfiguration

Testar WinRM

Test-WSMan

Verificar configuracdo detalhada

winrm get winrm/config

Desabilitar Remoting (se necessario)
Disable-PSRemoting -Force

Configuracao de TrustedHosts

Para conexdes fora de dominio ou com autenticagao NTLM:
No computador cliente

Executar como Administrador

Ver lista atual

Get-ltem WSMan:\localhost\Client\TrustedHosts

Adicionar computador especifico

Set-Iltem WSMan:\localhost\Client\TrustedHosts -Value "Server01"

Adicionar multiplos computadores

Set-Iltem WSMan:\localhost\Client\TrustedHosts -Value
"Server01,Server02,192.168.1.100"

Adicionar todos (ndo recomendado em producgéo)

Set-ltem WSMan:\localhost\Client\TrustedHosts -Value "*" -Force

Adicionar mantendo lista existente

$current = (Get-ltem WSMan:\localhost\Client\TrustedHosts).Value
$new ="$current,NewServer"

Set-Item WSMan:\localhost\Client\TrustedHosts -Value $new
Firewall - Regras necessarias

Verificar regras de firewall para WinRM

Get-NetFirewallRule -Name "WINRM-HTTP-In-TCP*" | Select-Object Name,
Enabled, Profile

Habilitar regra manualmente (se necessario)

Enable-NetFirewallRule -Name "WINRM-HTTP-In-TCP"

Criar regra customizada
New-NetFirewallRule -Name "WinRM-HTTP" °
-DisplayName "Windows Remote Management (HTTP-In)" °

-Direction Inbound °

-LocalPort 5985 °

-Protocol TCP °

-Action Allow
5.2.2 Executando Comandos Remotamente
Invoke-Command - Execugao Remota
Sintaxe basica

Invoke-Command -ComputerName Server01 -ScriptBlock { Get-Process }

Com credenciais
$cred = Get-Credential
Invoke-Command -ComputerName Server01 -Credential $cred -ScriptBlock {

Get-Service

Passar argumentos para o script block

Invoke-Command -ComputerName Server01 -ScriptBlock {
param($ProcessName)
Get-Process -Name $ProcessName

} -ArgumentList "powershell"

Usar varigveis locais no remoto
$serviceName = "wuauserv"
Invoke-Command -ComputerName Server01 -ScriptBlock {

Get-Service -Name $using:serviceName

Executar em multiplos computadores

$computadores = "Server01", "Server02", "Server03"

Invoke-Command -ComputerName $computadores -ScriptBlock {
$env:COMPUTERNAME

Get-Service -Name wuauserv | Select-Object Status

Executar script local remotamente

Invoke-Command -ComputerName Server01 -FilePath
"C:\Scripts\Diagnostico.ps1"

Executar em background (job)
$job = Invoke-Command -ComputerName Server01 -ScriptBlock {
Get-EventLog -LogName System -Newest 100

}-Aslob

Receber resultados do job

Receive-Job -Job $job

Executar com throttle (controlar paralelismo)
Invoke-Command -ComputerName $computadores -ScriptBlock {
Get-Service

} -ThrottleLimit 5

Salvar resultados em variavel

$resultado = Invoke-Command -ComputerName Server01 -ScriptBlock {

Get-Process | Where-Object CPU -gt 10

Propriedades adicionadas automaticamente

$resultado | Select-Object PSComputerName, Name, CPU
Enter-PSSession - Sessao Interativa
Iniciar sessao interativa

Enter-PSSession -ComputerName Server01

Com credenciais
$cred = Get-Credential

Enter-PSSession -ComputerName Server01 -Credential $cred

Comandos executados estdo no contexto remoto
[Server01]: PS C:\> Get-Location
[Server01]: PS C:\> Get-Service

[Server01]: PS C:\> $env:COMPUTERNAME

Sair da sessio

[Server01]: PS C:\> Exit-PSSession

Ou simplesmente

exit

5.2.3 Gerenciamento de Sessées
New-PSSession - Criar Sessodes Persistentes
Criar sesséo

$session = New-PSSession -ComputerName Server01

Com credenciais
$cred = Get-Credential

$session = New-PSSession -ComputerName Server01 -Credential $cred

Criar multiplas sessées

$sessions = New-PSSession -ComputerName Server01, Server02, Server03

Ver informacées da sessédo

$session | Format-List *

Propriedades importantes
$session.ComputerName

$session.State # Opened, Closed, Broken
$session.Availability # Available, Busy

$session.Id

Get-PSSession - Listar sessbes

Get-PSSession

Filtrar sessées
Get-PSSession -ComputerName Server01

Get-PSSession -State Opened

Usar sessdo existente com Invoke-Command

Invoke-Command -Session $session -ScriptBlock {

Get-Process

Entrar em sessao existente

Enter-PSSession -Session $session

Remove-PSSession - Fechar sessoes

Remove-PSSession -Session $session

Fechar todas as sessoées

Get-PSSession | Remove-PSSession

Disconnect-PSSession - Desconectar (manter ativa)

Disconnect-PSSession -Session $session

Connect-PSSession - Reconectar

Connect-PSSession -Session $session

Ou reconectar por ID/nome

Get-PSSession -ComputerName Server01 | Connect-PSSession
Vantagens de Sessoes Persistentes

Sem sesséo persistente (cria/destrdi conexao a cada vez)
Invoke-Command -ComputerName Server01 -ScriptBlock { $var=1}

Invoke-Command -ComputerName Server01 -ScriptBlock { $var } # null

Com sessao persistente (mantém estado)
$session = New-PSSession -ComputerName Server01
Invoke-Command -Session $session -ScriptBlock { $var =1}

Invoke-Command -Session $session -ScriptBlock { $var} # 1

Reusar sessgo é mais eficiente
Measure-Command {
1..10 | ForEach-Object{

Invoke-Command -ComputerName Server01 -ScriptBlock { Get-Service }

Measure-Command {
$session = New-PSSession -ComputerName Server01
1..10 | ForEach-Object{
Invoke-Command -Session $session -ScriptBlock { Get-Service }

}

Remove-PSSession $session
}
5.2.4 Gerenciamento de Miiltiplos Computadores
Executar em Multiplos Servidores
Lista de computadores
$computadores = @(
"Server01"
"Server02"
"Server03"

"192.168.1.100"

Ou ler de arquivo

$computadores = Get-Content "C:\Scripts\servidores.txt"

Executar comando em todos
$resultados = Invoke-Command -ComputerName $computadores -ScriptBlock {
[PSCustomObject]@{
Computador = $env:COMPUTERNAME

UptimeDias = [math]::Round((Get-Date) - (Get-CimInstance
Win32_OperatingSystem).LastBootUpTime).TotalDays, 2)

MemoriaLivreGB = [math]::Round((Get-Cimlnstance
Win32_OperatingSystem).FreePhysicalMemory/ 1MB, 2)

}

$resultados | Format-Table -AutoSize

Com tratamento de erros
$resultados = foreach ($comp in $computadores) {
try {
Invoke-Command -ComputerName $comp -ScriptBlock {
[PSCustomObject]@{
Computador = $env:COMPUTERNAME
Status = "Online"

SO = (Get-Cimlnstance Win32_OperatingSystem).Caption

Erro = $null
}
}-ErrorAction Stop
}
catch{

[PSCustomObject]@{
Computador = $comp
Status = "Offline"

SO = $null

Erro = $_.Exception.Message

$resultados | Format-Table -AutoSize

Executar em paralelo (mais rapido)
$resultados = Invoke-Command -ComputerName $computadores -ScriptBlock {
Get-Service -Name wuauserv

} -ThrottleLimit 10

Com sessobes persistentes (ainda mais eficiente)

$sessions = New-PSSession -ComputerName $computadores

$resultados = Invoke-Command -Session $sessions -ScriptBlock {

Get-HotFix | Select-Object -First 5

Remove-PSSession $sessions
Exemplo: Inventario de Multiplos Servidores

Script: Inventario-Servidores.ps1

param(
[Parameter(Mandatory=$true)]

[string[]]$ComputerName,

[PSCredential]$Credential,

[string]$OutputPath = "\Inventario_$(Get-Date -Format
'vyyyyMMdd_HHmmss').csv"

)

Write-Host "Coletando inventario de $($ComputerName.Count) servidor(es)..." -
ForegroundColor Cyan

$scriptBlock = {
try {
Sistema Operacional

$0s = Get-CimlInstance Win32_OperatingSystem

Processador

$cpu = Get-Cimlnstance Win32_Processor

Memoria

$cs = Get-Cimlnstance Win32_ComputerSystem

Discos
$discos = Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3"
$discolnfo = $discos | ForEach-Object {

"$($_.DevicelD): $([math]::Round($_.FreeSpace/1GB, 2))GB livre de
$([math]::Round($_.Size/1GB, 2))GB"

}

Rede
$adapters = Get-NetAdapter | Where-Object Status -eq 'Up'

$ips = $adapters | Get-NetIPAddress -AddressFamily IPv4 | Select-Object -
ExpandProperty IPAddress

[PSCustomObject]@{

Computador = $env:COMPUTERNAME

SO = $0s.Caption

Versao = $os.Version

Arquitetura = $0s.0SArchitecture

UltimolnicioMB = $os.LastBootUpTime

Processador = $cpu.Name

Nucleos = $cpu.NumberOfCores

NucleosLogicos = $cpu.NumberOfLogicalProcessors
MemoriaTotalGB = [math]::Round($cs.TotalPhysicalMemory / 1GB, 2)
MemorialLivreGB = [math]::Round($os.FreePhysicalMemory / 1MB, 2)
Discos = $discolnfo -join " | "

IPAddresses = $ips -join ", "
Status ="Sucesso"

Erro = $null

}

6. Melhores Praticas e Segurancga

¢ Gestao de credenciais e seguranga em scripts

¢ Padronizacdo e documentacéo

5. ADMINISTRAGAO DE SISTEMAS OPERACIONAIS WINDOWS
5.1 Gerenciamento de Arquivos, Processos e Servigos

5.1.1 Gerenciamento de Arquivos e Diretérios

Cmdlets Basicos de Manipulacao de Arquivos

Listar arquivos e diretdrios

Get-Childltem # Lista itens no diretorio atual
Get-Childltem C:\Windows # Lista itens em diretdrio especifico
Get-Childltem -Path C:\ -Recurse # Lista recursivamente
Get-ChildItem -File # Apenas arquivos

Get-Childltem -Directory # Apenas diretdrios

Get-Childltem -Hidden # Incluir arquivos ocultos

Get-Childltem -Filter "*ixt" # Filtrar por padrdo

Aliases comuns

ls #Alias Unix-like

dir #Alias DOS-like

gci #Alias PowerShell
Navegacao e Localizagao
Obter localizacéo atual
Get-Location

pwd #Alias

Mudar diretdrio
Set-Location C:\Windows

cd C:\Windows #Alias

Voltar ao diretdrio anterior
Set-Location -Path $OLDPWD

cd -

Ir para diretdério home
Set-Location ~

cd~

Criar estrutura de caminhos
$caminho = Join-Path -Path "C:\Logs" -ChildPath "2025\10"

$caminho # C:\Logs\2025\10

Dividir caminho
Split-Path "C:\Windows\System32\cmd.exe" -Parent # C:\Windows\System32
Split-Path "C:\Windows\System32\cmd.exe" -Leaf # cmd.exe

Split-Path "C:\Windows\System32\cmd.exe" -Extension # .exe

Converter caminho relativo para absoluto

Resolve-Path "\arquivo.txt"

Testar se caminho existe
Test-Path "C:\Windows\System32"

Test-Path "C:\arquivo_inexistente.txt"

Testar tipo

Test-Path "C:\Windows" -PathType Container # Diretdrio
Test-Path "C:\Windows\notepad.exe" -PathType Leaf # Arquivo
Criar, Copiar, Mover e Excluir

Criar novo item

New-Iltem -Path "C:\Temp\arquivo.txt" -ltemType File

New-ltem -Path "C:\Temp\MinhaPasta" -ItemType Directory

Criar multiplos diretdrios

New-ltem -Path "C:\Logs\2025\10\15" -ltemType Directory -Force

Criar arquivo com contetdo

New-Item -Path "teste.txt" -ltemType File -Value "Conteudo inicial"

Copiar arquivo

Copy-ltem -Path "origem.txt" -Destination "destino.txt"

Copiar diretdrio recursivamente

Copy-ltem -Path "C:\Origem" -Destination "D:\Destino" -Recurse

Copiar multiplos arquivos

Copy-ltem -Path "C:\Logs*.log" -Destination "D:\Backup\"

Copiar com filtro
Get-Childltem -Path "C:\Origem" -Filter "*.txt" |

Copy-ltem -Destination "C:\Destino"

Mover arquivo

Move-ltem -Path "arquivo.txt" -Destination "C:\NovoLocal\"

Renomear arquivo

Rename-Item -Path "antigo.txt" -NewName "novo.txt"

Renomear em lote

Get-Childltem -Filter "*tmp" |

Rename-ltem -NewName { $_.Name -replace "tmp'.txt'}

Excluir arquivo

Remove-Item -Path "arquivo.txt"

Excluir diretorio e conteudo

Remove-Item -Path "C:\Temp" -Recurse -Force

Excluir com confirmacéo

Remove-Item -Path "importante.txt" -Confirm

Excluir arquivos antigos

Get-Childltem -Path "C:\Logs" -Filter "*.log" |
Where-Object LastWriteTime -lt (Get-Date).AddDays(-30) |
Remove-Iltem -Force

Propriedades e Atributos de Arquivos

Obter informacgdes detalhadas

$arquivo = Get-ltem "C:\Windows\notepad.exe"

$arquivo | Format-List *

Propriedades importantes

$arquivo.Name # Nome do arquivo
$arquivo.FullName # Caminho completo
$arquivo.Length # Tamanho em bytes

$arquivo.Extension # Extenséo
$arquivo.CreationTime # Data de criagdo
$arquivo.LastWriteTime # Ultima modificagdo
$arquivo.LastAccessTime # Ultimo acesso

$arquivo.Attributes # Atributos

Modificar atributos
$arquivo.Attributes = "ReadOnly"
$arquivo.Attributes = "Hidden"

$arquivo.Attributes = "Archive, ReadOnly"

Remover atributos

$arquivo.Attributes = "Normal"

Modificar datas
$arquivo.CreationTime = Get-Date "2025-01-01"

$arquivo.LastWriteTime = Get-Date

Obter hash de arquivo (verificagao de integridade)
Get-FileHash "arquivo.zip" -Algorithm SHA256

Get-FileHash "arquivo.zip" -Algorithm MD5

Comparar hashes
$hash1 = (Get-FileHash "arquivo1.txt").Hash
$hash2 = (Get-FileHash "arquivo2.txt").Hash
if ($hash1 -eq $hash2){
Write-Host "Arquivos idénticos"
} else{
Write-Host "Arquivos diferentes”
}
Contetido de Arquivos
Ler conteudo de arquivo
Get-Content "arquivo.txt"

cat "arquivo.txt" #Alias

Ler com encoding especifico

Get-Content "arquivo.txt" -Encoding UTF8

Ler primeiras N linhas
Get-Content "arquivo.txt" -TotalCount 10

Get-Content "arquivo.txt" -Head 10

Ler ultimas N linhas

Get-Content "arquivo.txt" -Tail 10

Monitorar arquivo (tail -f)

Get-Content "log.txt" -Wait -Tail 10

Escrever conteudo (sobrescreve)

Set-Content -Path "arquivo.txt" -Value "Novo conteudo"”

Adicionar conteudo (append)

Add-Content -Path "log.txt" -Value "Nova entrada de log"

Limpar conteudo (mantém arquivo)

Clear-Content "arquivo.txt"

Ler arquivo como string unica

$conteudo = Get-Content "arquivo.txt" -Raw

Processar linha por linha

Get-Content "arquivo.txt" | ForEach-Object {

Write-Host "Linha: $_"

Buscar padrdo em arquivo

Select-String -Path "arquivo.txt" -Pattern "erro"

Buscar em multiplos arquivos

Get-Childltem -Filter "*.log" |
Select-String -Pattern "error" |
Select-Object Path, LineNumber, Line

Compressao de Arquivos

Criar arquivo ZIP

Compress-Archive -Path "C:\Dados" -DestinationPath "C:\Backup\dados.zip"

Adicionar a ZIP existente

Compress-Archive -Path "C:\Novos" -DestinationPath "C:\Backup\dados.zip" -
Update

Nivel de compresséao

Compress-Archive -Path "C:\Dados" -DestinationPath "dados.zip" -
CompressionLevel Optimal

Niveis: NoCompression, Fastest, Optimal

Extrair arquivo ZIP

Expand-Archive -Path "dados.zip" -DestinationPath "C:\Extraidos"

Extrair forcando sobrescrita

Expand-Archive -Path "dados.zip" -DestinationPath "C:\Extraidos" -Force

Listar conteudo de ZIP

Add-Type -AssemblyName System.lO.Compression.FileSystem
$zip = [System.lO.Compression.ZipFile]::OpenRead("dados.zip")
$zip.Entries | Select-Object Name, Length, CompressedLength
$zip.Dispose()

Exemplo Completo: Sistema de Gerenciamento de Arquivos

Arquivo: GerenciadorArquivos.ps1

<#
.SYNOPSIS
Sistema completo de gerenciamento de arquivos

#>

Funcao para organizar arquivos por extensgo
function Organize-FilesByExtension {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$SourcePath,

[Parameter(Mandatory=$true)]

[string]$DestinationPath,

[switch]$Whatlf

Write-Host " n=== ORGANIZACAO DE ARQUIVOS ==="-ForegroundColor Cyan

Write-Host "Origem: $SourcePath" -ForegroundColor Yellow

Obter todos os arquivos

$arquivos = Get-Childltem -Path $SourcePath -File

if ($arquivos.Count -eq 0) {
Write-Host "Nenhum arquivo encontrado." -ForegroundColor Yellow

return

Write-Host "Encontrados $($arquivos.Count) arquivos" -ForegroundColor Cyan

Agrupar por extensédo

$grupos = $arquivos | Group-Object Extension

foreach ($grupo in $grupos) {

$extensao = if ($grupo.Name) { $grupo.Name.TrimStart(") } else {
"SemExtensao" }

$pastaDestino = Join-Path $DestinationPath $extensao

Write-Host " nProcessando $($grupo.Count) arquivo(s) .$extensao" -
ForegroundColor Yellow

if (-not $Whatlf) {
if (-not (Test-Path $pastaDestino)) {
New-Item -Path $pastaDestino -IltemType Directory | Out-Null

Write-Host " Pasta criada: $pastaDestino" -ForegroundColor Green

foreach ($arquivo in $grupo.Group) {

$destino = Join-Path $pastaDestino $arquivo.Name

if ($Whatlf) {

Write-Host " [SIMULACAO] Mover: $($arquivo.Name) > $pastaDestino" -
ForegroundColor Gray

} else {

try{

Move-Item -Path $arquivo.FullName -Destination $destino -Force
Write-Host " v Movido: $($arquivo.Name)" -ForegroundColor Green

}

catch{

Write-Host" X Erro ao mover $($arquivo.Name): $_" -ForegroundColor
Red

if ($Whatlf) {

Write-Host " n(Simulacéao - use sem -Whatlf para executar)" -ForegroundColor
Yellow

}else{

Write-Host " nOrganizacéo concluida!" -ForegroundColor Green

Funcdo para buscar arquivos duplicados
function Find-DuplicateFiles {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$Path,

[switch]$Recurse

Write-Host " " n=== BUSCA DE ARQUIVOS DUPLICADOS ==="-ForegroundColor
Cyan

Write-Host "Analisando: $Path" -ForegroundColor Yellow

$parametros = @{
Path = $Path
File = $true

}

if (fRecurse) { $parametros.Recurse = $true }

Write-Host "Calculando hashes..." -ForegroundColor Yellow

$arquivos = Get-Childltem @parametros | ForEach-Object {
[PSCustomObject]@{
Path =$_.FullName
Name =$_.Name
Size = $_.Length

Hash = (Get-FileHash $_.FullName -Algorithm MD5).Hash

$duplicados = $arquivos | Group-Object Hash | Where-Object Count -gt 1

if ($duplicados){

Write-Host " nEncontrados $($duplicados.Count) grupos de arquivos
duplicados:" -ForegroundColor Red

foreach ($grupo in $duplicados) {

Write-Host " n--- Grupo (Hash: $($grupo.Name.Substring(0,8))...) ---" -
ForegroundColor Yellow

$primeiroArquivo = $grupo.Group[0]

Write-Host "Tamanho: $([math]::Round($primeiroArquivo.Size / 1KB, 2)) KB" -
ForegroundColor Cyan

foreach ($arquivo in $grupo.Group) {

Write-Host " $($arquivo.Path)" -ForegroundColor White

Calcular espaco desperdicado

$espacoDuplicado = ($duplicados | ForEach-Object{
$primeiroArquivo = $_.Group[0]
$primeiroArquivo.Size * ($_.Count - 1)

} | Measure-Object -Sum).Sum

Write-Host " nEspaco desperdigado: $([math]::Round($espacoDuplicado /
1MB, 2)) MB" -ForegroundColor Red

}else{

Write-Host "~ nNenhum arquivo duplicado encontrado." -ForegroundColor
Green

}

Funcdo para analise de uso de disco
function Get-DiskUsageReport {
param(

[Parameter(Mandatory=$true)]

[ValidateScript({Test-Path $_})]

[string]$Path,

[int]$TopN =10

Write-Host " n=== RELATORIO DE USO DE DISCO ==="-ForegroundColor Cyan

Write-Host "Analisando: $Path" -ForegroundColor Yellow

Analisar subdiretdrios

$diretorios = Get-Childltem -Path $Path -Directory -ErrorAction SilentlyContinue

$relatorio = foreach ($dir in $diretorios) {

Write-Host """ -NoNewline -ForegroundColor Gray

$tamanho = (Get-Childltem -Path $dir.FullName -Recurse -File -ErrorAction
SilentlyContinue |

Measure-Object -Property Length -Sum).Sum

[PSCustomObject]@{
Diretorio = $dir.Name
CaminhoCompleto = $dir.FullName
TamanhoBytes = $tamanho
TamanhoMB =[math]::Round($tamanho / 1MB, 2)
TamanhoGB = [math]::Round($tamanho / 1GB, 2)

Arquivos = (Get-Childltem -Path $dir.FullName -Recurse -File -ErrorAction
SilentlyContinue).Count

}

Write-Host "™ n"

Top N maiores diretorios

$top = $relatorio | Sort-Object TamanhoBytes -Descending | Select-Object -First
$TopN

Write-Host "TOP $TopN MAIORES DIRETORIOS:" -ForegroundColor Yellow

$top | Format-Table Diretorio, TamanhoGB, TamanhoMB, Arquivos -AutoSize

Total
$total = ($relatorio | Measure-Object -Property TamanhoBytes -Sum).Sum

Write-Host "TOTAL: $([math]::Round($total / 1GB, 2)) GB" -ForegroundColor
Cyan

}

Funcédo para backup incremental
function Start-IncrementalBackup {
param(
[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$SourcePath,

[Parameter(Mandatory=$true)]

[string]$BackupPath,

[int]$DaysModified = 1

Write-Host "™ n=== BACKUP INCREMENTAL ===" -ForegroundColor Cyan

Criar diretdrio de backup
$timestamp = Get-Date -Format "yyyyMMdd_HHmmss"
$backupDestino = Join-Path $BackupPath "Backup_$timestamp"

New-Item -Path $backupDestino -ltemType Directory -Force | Out-Null

Write-Host "Origem: $SourcePath" -ForegroundColor Yellow

Write-Host "Destino: $backupDestino" -ForegroundColor Yellow

Buscar arquivos modificados
$dataLimite = (Get-Date).AddDays(-$DaysModified)
$arquivos = Get-Childltem -Path $SourcePath -Recurse -File |

Where-Object LastWriteTime -gt $datalLimite

if ($arquivos.Count -eq 0) {

Write-Host "Nenhum arquivo modificado nos ultimos $DaysModified dia(s)." -
ForegroundColor Yellow

return

Write-Host "Arquivos a fazer backup: $($arquivos.Count)" -ForegroundColor
Cyan

$contador=0
foreach ($arquivo in $arquivos) {
$contador++

Write-Progress -Activity "Backup em andamento" -Status "$contador de
$($arquivos.Count)" -PercentComplete (($contador / $arquivos.Count) * 100)

Recriar estrutura de diretdrios
$relativePath = $arquivo.FullName.Replace($SourcePath, ")
$destinoArquivo = Join-Path $backupDestino $relativePath

$pastaPai = Split-Path $destinoArquivo -Parent

if (-not (Test-Path $pastaPai)) {

New-Iltem -Path $pastaPai -ltemType Directory -Force | Out-Null

Copy-Item -Path $arquivo.FullName -Destination $destinoArquivo -Force

Write-Progress -Activity "Backup em andamento" -Completed

Comprimir backup
Write-Host "Comprimindo backup..." -ForegroundColor Yellow
$zipPath = "$backupDestino.zip"

Compress-Archive -Path $backupDestino -DestinationPath $zipPath -
CompressionLevel Optimal

Remover pasta temporaria

Remove-Iltem -Path $backupDestino -Recurse -Force

$zipInfo = Get-Item $zipPath
Write-Host "™ nv Backup concluido!" -ForegroundColor Green
Write-Host "Arquivo: $zipPath" -ForegroundColor Cyan

Write-Host "Tamanho: $([math]::Round($zipIinfo.Length / 1MB, 2)) MB" -
ForegroundColor Cyan

}

5.1.2 Gerenciamento de Processos
Listar e Analisar Processos
Listar todos 0s processos

Get-Process

Processo especifico
Get-Process -Name "notepad"

Get-Process -Id 1234

Multiplos processos

Get-Process -Name "chrome", "firefox", "edge"

Propriedades detalhadas

Get-Process -Name "powershell" | Format-List *

Propriedades importantes

$proc = Get-Process -Name "powershell" | Select-Object -First 1

$proc.Name # Nome do processo
$proc.Id #PID
$proc.CPU # Tempo de CPU (segundos)

$proc.WorkingSet # Memdria fisica (bytes)
$proc.VirtualMemorySize # Memdria virtual
$proc.Threads.Count # Numero de threads
$proc.StartTime # Hora de inicio
$proc.Path # Caminho do executavel
$proc.Company # Nome da empresa

$proc.ProductVersion # Versgo do produto

Filtrar processos
Get-Process | Where-Object CPU -gt 10
Get-Process | Where-Object WorkingSet -gt 100MB

Get-Process | Where-Object Company -like "*Microsoft*"

Ordenar por uso de recursos
Get-Process | Sort-Object CPU -Descending | Select-Object -First 10

Get-Process | Sort-Object WorkingSet -Descending | Select-Object -First 10

Agrupar por empresa

Get-Process | Group-Object Company | Sort-Object Count -Descending

Estatisticas

Get-Process | Measure-Object -Property CPU, WorkingSet -Sum -Average

Exportar lista de processos

Get-Process | Export-Csv "processos_$(Get-Date -Format
'yyyyMMdd_HHmMmmss').csv" -NoTypelnformation

Iniciar e Parar Processos
Iniciar processo

Start-Process "notepad.exe"

Iniciar com argumentos

Start-Process "notepad.exe" -ArgumentList "C:\arquivo.txt"

Iniciar e aguardar concluséao

Start-Process "ping.exe" -ArgumentList "google.com" -Wait

Iniciar como administrador

Start-Process "powershell.exe" -Verb RunAs

Iniciar oculto

Start-Process "cmd.exe" -WindowStyle Hidden

Iniciar e capturar objeto do processo
$proc = Start-Process "notepad.exe" -PassThru

$proc.Id

Parar processo por nome

Stop-Process -Name "notepad"

Parar processo por ID

Stop-Process -Id 1234

Parar forcadamente

Stop-Process -Name "chrome" -Force

Parar com confirmacao

Stop-Process -Name "excel" -Confirm

Parar todos os processos com nome especifico

Get-Process -Name "chrome" | Stop-Process -Force

Aguardar processo terminar

$proc = Get-Process -Name "setup"

$proc.WaitForExit()

Aguardar com timeout
$proc.WaitForExit(30000) # 30 segundos
Monitoramento Avancgado de Processos
Obter processos com proprietario (requer privilégios)
Get-Cimlnstance Win32_Process | Select-Object Processld, Name, @{
Name='Owner’
Expression={
$owner =$_.GetOwner()

"$($owner.Domain)\$($owner.User)"

Obter linha de comando completa
Get-Cimlnstance Win32_Process |
Where-Object Name -eq "powershell.exe" |

Select-Object Processld, Name, CommandLine

Informacdes detalhadas de memdria
$proc = Get-Process -Name "chrome" | Select-Object -First 1
[PSCustomObject]@{
Nome = $proc.Name
PID = $proc.ld
'WorkingSet (MB)' = [math]::Round($proc.WorkingSet / 1MB, 2)
'PrivateMemory (MB)' = [math]::Round($proc.PrivateMemorySize64 / 1MB, 2)
'VirtualMemory (MB)' = [math]::Round($proc.VirtualMemorySize64 / 1MB, 2)

'PeakWorkingSet (MB)' = [math]::Round($proc.PeakWorkingSet64 / 1MB, 2)

Monitorar alteracées em processos
$antes = Get-Process
Start-Sleep -Seconds 10

$depois = Get-Process

Novos processos
Compare-Object $antes $depois -Property Name, Id |
Where-Object Sidelndicator -eq '=>' |

Select-Object Name, Id

Processos encerrados

Compare-Object $antes $depois -Property Name, Id |
Where-Object Sidelndicator -eq '<='|
Select-Object Name, Id

Exemplo Completo: Monitor de Processos

Arquivo: MonitorProcessos.ps1

<#
.SYNOPSIS
Monitora processos em tempo real

#>

param(
[int]$CPUThreshold = 80,
[int}]$MemoryMBThreshold = 500,

[int]$IntervalSeconds = 5,

[switch]$ContinuousMonitoring

function Get-ProcessMetrics {

param([int}]$CPUThreshold, [int]$MemoryMBThreshold)

$processos = Get-Process | Where-Object {
($_.CPU -gt $CPUThreshold) -or

(($_.WorkingSet / 1MB) -gt $MemoryMBThreshold)

$metricas = foreach ($proc in $processos) {
[PSCustomObject]@{
Nome = $proc.Name
PID = $proc.ld
'CPU (s)' = [math]::Round($proc.CPU, 2)
'Memodria (MB)' = [math]::Round($proc.WorkingSet / 1MB, 2)
Threads = $proc.Threads.Count
Empresa = $proc.Company

Caminho = $proc.Path

Status = if ($proc.CPU -gt $CPUThreshold) {" 4. CPUALTA" }else{" A
MEMORIA ALTA" }

}

return $metricas

function Show-ProcessDashboard {

param($Metricas)

Clear-Host
Write-Host
"M
1" -ForegroundColor Cyan
Write-Host " || MONITOR DE PROCESSOS EM TEMPO REAL || "

ForegroundColor Cyan

Write-Host
wl

-ForegroundColor Cyan
Write-Host ""

Write-Host "Data/Hora: $(Get-Date -Format 'dd/MM/yyyy HH:mm:ss')" -
ForegroundColor Yellow

Write-Host "Limites: CPU > $CPUThreshold s | Memoria > $MemoryMBThreshold
MB" -ForegroundColor Yellow

Write-Host "

if ($Metricas.Count -eq 0) {
Write-Host "v Nenhum processo acima dos limites" -ForegroundColor Green

}else{

Write-Host " 4. $($Metricas.Count) PROCESSO(S) ACIMA DOS LIMITES" -
ForegroundColor Red

Write-Host ""

$Metricas | Format-Table Nome, PID, 'CPU (s), 'Memdéria (MB)', Threads, Status
-AutoSize

}

Estatisticas gerais

$todosProcessos = Get-Process

$cpuTotal = ($todosProcessos | Measure-Object -Property CPU -Sum).Sum

$memoriaTotal = ($todosProcessos | Measure-Object -Property WorkingSet -
Sum).Sum/ 1GB

Write-Host " n--- ESTATISTICAS GERAIS ---" -ForegroundColor Cyan

Write-Host "Total de Processos: $($todosProcessos.Count)" -ForegroundColor
White

Write-Host "CPU Total: $([math]::Round($cpuTotal, 2)) s" -ForegroundColor
White

Write-Host "Memoéria Total: $([math]::Round($memoriaTotal, 2)) GB" -
ForegroundColor White

}

Loop de monitoramento
do{

$metricas = Get-ProcessMetrics -CPUThreshold $CPUThreshold -
MemoryMBThreshold $MemoryMBThreshold

Show-ProcessDashboard -Metricas $metricas

if ($ContinuousMonitoring) {

Write-Host " nAtualizando em $IntervalSeconds segundos... (Ctrl+C para
sair)" -ForegroundColor Gray

Start-Sleep -Seconds $IntervalSeconds
}
} while ($ContinuousMonitoring)
5.1.3 Gerenciamento de Servicos
Listar e Consultar Servicos
Listar todos os servicos

Get-Service

Servigo especifico

Get-Service -Name "wuauserv"

Multiplos servicos

Get-Service -Name "wuauserv", "BITS", "Spooler"

Filtrar por status
Get-Service | Where-Object Status -eq "Running"

Get-Service | Where-Object Status -eq "Stopped"

Filtrar por tipo de inicializagcdo
Get-Service | Where-Object StartType -eq "Automatic”
Get-Service | Where-Object StartType -eq "Manual”

Get-Service | Where-Object StartType -eq "Disabled"

Propriedades detalhadas
$servico = Get-Service -Name "wuauserv"

$servico | Format-List *

$servico.Name # Nome do servico

$servico.DisplayName # Nome de exibigcédo

$servico.Status # Status (Running, Stopped, etc)
$servico.StartType # Tipo de inicializagdo
$servico.DependentServices # Servigcos que dependem deste

$servico.ServicesDependedOn # Servigos dos quais este depende

Buscar servicos por nome de exibicdo

Get-Service | Where-Object DisplayName -like "*Update*"

Ordenar servicos

Get-Service | Sort-Object Status, DisplayName

Agrupar por status

Get-Service | Group-Object Status | Select-Object Name, Count

Exportar lista

Get-Service | Export-Csv "servicos.csv" -Nolypelnformation
Iniciar, Parar e Gerenciar Servigos

Iniciar servigo

Start-Service -Name "wuauserv"

Parar servigo

Stop-Service -Name "wuauserv"

Reiniciar servico

Restart-Service -Name "wuauserv"

Suspender servigo (se suportado)

Suspend-Service -Name "servicoX"

Retomar servico

Resume-Service -Name "servicoX"

Multiplos servigos

Start-Service -Name "BITS", "wuauserv'

Stop-Service -Name "BITS", "wuauserv"

Forcar parada (incluir dependentes)

Stop-Service -Name "wuauserv" -Force

Aguardar servigo iniciar
$servico = Get-Service -Name "wuauserv"

$servico.WaitForStatus("Running", (New-TimeSpan -Seconds 30))

Configurar tipo de inicializagcdo
Set-Service -Name "wuauserv" -Startuplype Automatic
Set-Service -Name "wuauserv" -StartupType Manual

Set-Service -Name "wuauserv" -Startuplype Disabled

Alterar descricao do servico (requer WMI/CIM)

$servico = Get-CimlInstance -ClassName Win32_Service -Filter

"Name='wuauserv

$servico | Set-CimInstance -Property @{Description="Servico de Atualizagao do
Windows"}

Modificar conta de logon do servico

$servico = Get-CimInstance -ClassName Win32_Service -Filter
"Name='MeuServico"

$servico | Invoke-CimMethod -MethodName Change -Arguments @{
StartName = "DOMINIO\Usuario"
StartPassword = "senha"

}

Dependéncias de Servigos

Obter dependéncias

$servico = Get-Service -Name "wuauserv"

Servigos dos quais depende (pré-requisitos)

$servico.ServicesDependedOn | Select-Object Name, DisplayName, Status

Servicos que dependem deste

$servico.DependentServices | Select-Object Name, DisplayName, Status

Verificar dependéncias antes de parar
function Stop-ServiceWithDependencies {

param([string]$ServiceName)

$servico = Get-Service -Name $ServiceName

if ($servico.DependentServices.Count -gt 0) {
Write-Host "Servicos dependentes:" -ForegroundColor Yellow
$servico.DependentServices | ForEach-Object {

Write-Host " - $($_.DisplayName) ($($_.Status))" -ForegroundColor Cyan

$confirmar = Read-Host "Deseja parar todos os servigos dependentes? (S/N)"
if ($confirmar -eq 'S') {
Stop-Service -Name $ServiceName -Force
}
}else{

Stop-Service -Name $ServiceName

Iniciar servigo e suas dependéncias
function Start-ServiceWithDependencies {

param([string]$ServiceName)

$servico = Get-Service -Name $ServiceName

Iniciar dependéncias primeiro
foreach ($dep in $servico.ServicesDependedOn) {
if ($dep.Status -ne 'Running') {

Write-Host "Iniciando dependéncia: $($dep.DisplayName)" -
ForegroundColor Yellow

Start-Service -Name $dep.Name

Iniciar servico principal

Write-Host "Iniciando servigo: $($servico.DisplayName)" -ForegroundColor
Green

Start-Service -Name $ServiceName
}
Exemplo Completo: Gerenciador de Servicos

Arquivo: GerenciadorServicos.ps1

<#
.SYNOPSIS
Gerenciador completo de servigos do Windows

#>

Funcdo para obter servigos criticos

function Get-CriticalServices {
$servicosCriticos = @(

"wuauserv", # Windows Update
"BITS", # Servico de Transferéncia Inteligente
"EventLog", # Log de Eventos
"WinRM", # Windows Remote Management
"W32Time", # Hora do Windows
"Spooler", #SpoolerdeImpresséo
"Dhcp", # Cliente DHCP
"Dnscache", # Cliente DNS
"LanmanServer", # Servidor

"LanmanWorkstation" # Estacdo de Trabalho

$resultado = foreach ($nome in $servicosCriticos) {

$servico = Get-Service -Name $nome -ErrorAction SilentlyContinue

if ($servico) {
[PSCustomObject]@{
Nome = $servico.Name
NomeExibicao = $servico.DisplayName
Status = $servico.Status
Tipolnicio = $servico.StartType

Alerta = if ($servico.Status -ne 'Running' -and $servico.StartType -eq
'‘Automatic’) {

" A ATENCAO"
}else{

n OKII

return $resultado

Funcdo para reiniciar servicos problematicos
function Restart-ProblematicServices {
param(

[int]$UptimeHoursThreshold = 720 # 30 dias

Write-Host "Verificando servigos problematicos..." -ForegroundColor Yellow

$servicosProblematicos = Get-Cimlnstance Win32_Service | Where-Object {
$_.State -eq 'Running' -and $_.StartMode -eq 'Auto’
}| ForEach-Object{
try {
$processo = Get-Process -Id $_.Processld -ErrorAction Stop

$uptime = (Get-Date) - $processo.StartTime

if ($uptime.TotalHours -gt $UptimeHoursThreshold) {
[PSCustomObject]@{
Nome =% _.Name
DisplayName = $_.DisplayName

UptimeHoras = [math]::Round($uptime.TotalHours, 2)

PID =$_.Processld

}

catch{

Processo ndo encontrado ou sem permissao

if ($servicosProblematicos) {
Write-Host " nServigcos com uptime alto:" -ForegroundColor Red

$servicosProblematicos | Format-Table -AutoSize

$confirmar = Read-Host " nDeseja reiniciar estes servigos? (S/N)"
if ($confirmar -eq 'S') {
foreach ($servico in $servicosProblematicos) {

Write-Host "Reiniciando $($servico.DisplayName)..." -ForegroundColor
Yellow

try {
Restart-Service -Name $servico.Nome -Force -ErrorAction Stop

Write-Host" v Reiniciado com sucesso" -ForegroundColor Green

}

catch{

Write-Host" X Erro: $_" -ForegroundColor Red

}else{

Write-Host "Nenhum servigo problematico encontrado.” -ForegroundColor
Green

}

Funcédo para backup de configuracao de servicos
function Export-ServiceConfiguration {
param(

[string]$OutputPath = "\ServiceBackup_$(Get-Date -Format
'yyyyMMdd_HHmMmess').csv"

)

Write-Host "Exportando configuracao de servigos..." -ForegroundColor Yellow

$servicos = Get-Cimlnstance Win32_Service | Select-Object @{
Name='Nome'
Expression={$_.Name}

} ©@f
Name='"NomeExibicao'
Expression={$_.DisplayName}

} ©@f
Name='Status'
Expression={$_.State}

L @
Name='Tipolnicio'
Expression={$_.StartMode}

L @
Name='ContalLogon'

Expression={$_.StartName}

} @f
Name='CaminhoExecutavel'

Expression={$_.PathName}

$servicos | Export-Csv -Path $OutputPath -NoTypelnformation -Encoding UTF8

Write-Host "v Configuragao exportada para: $OutputPath" -ForegroundColor
Green

Write-Host "Total de servigos: $($servicos.Count)" -ForegroundColor Cyan

Funcdo para criar novo servigo
function New-WindowsService {
param(
[Parameter(Mandatory=$true)]

[string]$ServiceName,

[Parameter(Mandatory=$true)]

[string]$DisplayName,

[Parameter(Mandatory=$true)]
[ValidateScript({Test-Path $_})]

[string]$BinaryPath,

[ValidateSet("Automatic", "Manual", "Disabled")]

[string]$StartupType = "Manual",

[string]$Description

Write-Host "Criando servigo: $DisplayName" -ForegroundColor Yellow

try {

Criar servico usando New-Service (requer PowerShell 6+) ou sc.exe
if ($PSVersionTable.PSVersion.Major -ge 6) {
$params = @{
Name = $ServiceName
DisplayName = $DisplayName
BinaryPathName = $BinaryPath

StartupType = $StartupType

if ($Description) {

$params.Description = $Description

New-Service @params
}else{
Usar sc.exe para versdes antigas
$startType = switch ($StartupType) {
"Automatic" { "auto" }
"Manual" {"demand" }

"Disabled" { "disabled" }

$result = & sc.exe create $ServiceName binPath= $BinaryPath DisplayName=
$DisplayName start= $startType

if ($Description) {

& sc.exe description $ServiceName $Description | Out-Null

Write-Host "v Servigo criado com sucesso!" -ForegroundColor Green

Exibir informacées

$novoServico = Get-Service -Name $ServiceName

$novoServico | Format-List Name, DisplayName, Status, StartType
}

catch{

Write-Host " X Erro ao criar servigo: $_" -ForegroundColor Red

Menu principal
function Show-ServiceMenu {
do{
Clear-Host

Write-Host

Ir -
ForegroundColor Cyan

Write-Host "|| GERENCIADOR DE SERVIGOS DO WINDOWS ||* -
ForegroundColor Cyan

Write-Host
l I _

ForegroundColor Cyan
Write-Host "
Write-Host "1. Verificar Servigos Criticos" -ForegroundColor White
Write-Host "2. Listar Servigos em Execucgao" -ForegroundColor White
Write-Host "3. Listar Servigos Parados" -ForegroundColor White
Write-Host "4. Reiniciar Servicos Problematicos" -ForegroundColor White
Write-Host "5. Exportar Configuracao de Servicos" -ForegroundColor White
Write-Host "6. Buscar Servico" -ForegroundColor White
Write-Host "7. Gerenciar Servigo Especifico" -ForegroundColor White
Write-Host "8. Sair" -ForegroundColor White

Write-Host ""

$opcao = Read-Host "Escolha uma opgéo"

switch ($opcao) {
g
$criticos = Get-CriticalServices
$criticos | Format-Table -AutoSize
Read-Host " nPressione Enter para continuar"
}
ngn g
Get-Service | Where-Object Status -eq "Running" |
Sort-Object DisplayName |
Format-Table Name, DisplayName, Status -AutoSize
Read-Host " nPressione Enter para continuar"

}
"3

Get-Service | Where-Object Status -eq "Stopped" |
Sort-Object DisplayName |
Format-Table Name, DisplayName, StartType -AutoSize
Read-Host " nPressione Enter para continuar"
}
nan g
Restart-ProblematicServices
Read-Host " nPressione Enter para continuar"
}
ngn ¢
Export-ServiceConfiguration
Read-Host " nPressione Enter para continuar"
}
"6" {
$busca = Read-Host "Digite o nome ou parte do nome do servigo"
Get-Service | Where-Object{
$_.Name -like "*$busca*" -or $_.DisplayName -like "*$busca*"
} | Format-Table Name, DisplayName, Status, StartType -AutoSize
Read-Host " nPressione Enter para continuar"
}
w7 g
$nomeServico = Read-Host "Digite o nome do servigo"

$servico = Get-Service -Name $nomeServico -ErrorAction SilentlyContinue

if ($servico) {

Write-Host " nServigo: $($servico.DisplayName)" -ForegroundColor
Cyan

Write-Host "Status: $($servico.Status)" -ForegroundColor
$(if($servico.Status -eq 'Running'){'Green'}else{'Red'})

Write-Host " n1. Iniciar"
Write-Host "2. Parar"
Write-Host "3. Reiniciar"

Write-Host "4. Voltar"

$acao = Read-Host "" nEscolha uma agao"

switch ($acao) {

"1" { Start-Service -Name $nomeServico; Write-Host "Servigo iniciado"
-ForegroundColor Green }

"2" { Stop-Service -Name $nomeServico; Write-Host "Servigo parado" -
ForegroundColor Yellow }

"3" { Restart-Service -Name $nomeServico; Write-Host "Servigo
reiniciado" -ForegroundColor Green }

}

}else{

Write-Host "Servico ndo encontrado!" -ForegroundColor Red

}
Read-Host " nPressione Enter para continuar"
}
}
} while ($opcao -ne "8")
}
Executar menu

Show-ServiceMenu
5.2 Acesso Remoto e Gerenciamento de Miiltiplos Computadores
5.2.1 PowerShell Remoting - Fundamentos

O que é PowerShell Remoting?

PowerShell Remoting permite executar comandos e scripts em computadores
remotos através do protocolo WS-Management (WinRM).

Caracteristicas:
e Baseado em WS-Management (porta 5985 HTTP, 5986 HTTPS)
e Suporta autenticacdo Kerberos, NTLM, CredSSP

e Permite execucido de comandos em multiplos computadores
simultaneamente

e Suporta sessoes persistentes e interativas
Habilitar PowerShell Remoting
No computador de destino (servidor/alvo)
Executar como Administrador

Enable-PSRemoting -Force

Configuragdo automatica:

- Inicia servico WinRM

- Configura tipo de inicializagcdo como Automatico
- Cria listener para aceitar requisicées

- Cria regras de firewall

Verificar configuragcdo

Test-WSMan

Verificar listeners

Get-WSManlnstance -ResourceURI winrm/config/listener -Enumerate

Desabilitar (se necessario)
Disable-PSRemoting -Force
Configurar Clientes Confiaveis (Workgroup)

Em ambientes sem dominio Active Directory:

No computador cliente

Executar como Administrador

Adicionar hosts confiaveis (TrustedHosts)

Set-Iltem WSMan:\localhost\Client\TrustedHosts -Value "192.168.1.100,Server01"
-Force

Adicionar todos (ndo recomendado em producgéo)

Set-ltem WSMan:\localhost\Client\TrustedHosts -Value "*" -Force

Adicionar mantendo valores existentes
$current = (Get-ltem WSMan:\localhost\Client\TrustedHosts).Value

Set-ltem WSMan:\localhost\Client\TrustedHosts -Value "$current,NovoServidor" -
Force

Verificar hosts confiaveis

Get-ltem WSMan:\localhost\Client\TrustedHosts

Limpar lista

Clear-Iltem WSMan:\localhost\Client\TrustedHosts -Force
Configurar Firewall

Regras criadas automaticamente pelo Enable-PSRemoting:
- Windows Remote Management (HTTP-In)

- Windows Remote Management - Compatibility Mode (HTTP-In)

Verificar regras de firewall

Get-NetFirewallRule -Name "WINRM-HTTP-In-TCP*" | Select-Object Name,
Enabled, Direction

Criar regra manualmente (se necessario)
New-NetFirewallRule -Name "PSRemoting-In" "
-DisplayName "PowerShell Remoting" °
-Protocol TCP °
-LocalPort 5985 °
-Action Allow ~
-Direction Inbound *

-Enabled True

Testar conectividade
Test-NetConnection -ComputerName "Server01" -Port 5985
5.2.2 Comandos Remotos
Invoke-Command - Executar Comandos Remotos
Caracteristicas:
e Executa comandos em um ou mais computadores remotos
e Retorna objetos desserializados
e Suporta execugao paralela
Sintaxe basica

Invoke-Command -ComputerName NomeComputador -ScriptBlock { comando }

Exemplo 1: Comando simples
Invoke-Command -ComputerName "Server01" -ScriptBlock {

Get-Process | Select-Object -First 5

Exemplo 2: Com credenciais
$cred = Get-Credential

Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock {

Get-Service

Exemplo 3: Mdltiplos computadores
$computadores = "Server01", "Server02", "Server03"
Invoke-Command -ComputerName $computadores -ScriptBlock {

Get-Computerinfo | Select-Object CsName, OsName, OsVersion

Exemplo 4: Usando variaveis locais
$serviceName = "wuauserv"
Invoke-Command -ComputerName "Server01" -ScriptBlock {

Get-Service -Name $using:serviceName

Exemplo 5: Executar script remoto

Invoke-Command -ComputerName "Server01" -FilePath
"C:\Scripts\MeuScript.ps1"

Exemplo 6: Passar argumentos

Invoke-Command -ComputerName "Server01" -FilePath "C:\Scripts\Script.ps1" -
ArgumentList "arg1", "arg2"

Exemplo 7: Execugéo assincrona (job)
$job = Invoke-Command -ComputerName "Server01" -ScriptBlock {
Get-EventLog -LogName System -Newest 1000

}-Aslob

Aguardar job

Wait-Job $job

Receive-Job $job

Exemplo 8: Com throttle (limitar execuc¢bes paralelas)
Invoke-Command -ComputerName $computadores -ScriptBlock {
Get-Process

} -ThrottleLimit 10

Exemplo 9: Salvar saida em variavel
$resultados = Invoke-Command -ComputerName "Server01" -ScriptBlock {

Get-WinEvent -LogName Application -MaxEvents 100

$resultados | Where-Object LevelDisplayName -eq "Error"

Exemplo 10: Com timeout

Invoke-Command -ComputerName "Server01" -ScriptBlock {
Start-Sleep -Seconds 60

} -SessionOption (New-PSSessionOption -IdleTimeout 30000)

Enter-PSSession e Exit-PSSession - Sessao Interativa

Iniciar sessé&o interativa

Enter-PSSession -ComputerName "Server01"

Com credenciais

$cred = Get-Credential

Enter-PSSession -ComputerName "Server01" -Credential $cred

Prompt mudara para: [Server01]: PS C:\>

Todos os comandos sdo executados no servidor remoto

Comandos de exemplo dentro da sess&o:
Get-Process

Get-Service

cd C:\Logs

Get-Childltem

Sair da sessdo
Exit-PSSession
5.2.3 Sessoes Persistentes (PSSessions)
PSSessions sao sessdes persistentes que mantém estado entre comandos.
Vantagens:
e Melhor performance para multiplos comandos
e Mantém varidveis e estado
e Reutilizavel
e Suporta desconexdo e reconexao
Criar sessgo

$sessao = New-PSSession -ComputerName "Server01"

Ver informacdes da sessédo

$sessao | Format-List *

Usar sessdo com Invoke-Command
Invoke-Command -Session $sessao -ScriptBlock {
$variavel = "Dados persistem na sessao"

Get-Date

Reutilizar sesséo (variavel ainda existe)
Invoke-Command -Session $sessao -ScriptBlock {

Write-Output $variavel # "Dados persistem na sessgo”

Multiplas sessoes
$servidores ="Server01", "Server02", "Server03"

$sessoes = New-PSSession -ComputerName $servidores

Executar em todas as sessoes
Invoke-Command -Session $sessoes -ScriptBlock {

Get-Process | Measure-Object -Property WorkingSet -Sum

Fechar sessao especifica

Remove-PSSession -Session $sessao

Fechar todas as sessées

Get-PSSession | Remove-PSSession

Sessbes desconectadas (util para tarefas longas)

$sessao = New-PSSession -ComputerName "Server01"

Executar comando e desconectar
Invoke-Command -Session $sessao -ScriptBlock {
Start-Sleep -Seconds 300

} -InDisconnectedSession

Listar sessoes desconectadas

Get-PSSession -ComputerName "Server01"

Reconectar
$sessao = Get-PSSession -ComputerName "Server01" -State Disconnected

Connect-PSSession -Session $sessao

Receber resultados

Receive-PSSession -Session $sessao

Opcoes de Sessao

Criar opgbes customizadas

$opcoes = New-PSSessionOption *
-ldleTimeout 7200000 ° #2 horas
-OperationTimeout 3600000 ° # 1 hora
-MaxConnectionRetryCount 5 °
-NoMachineProfile
-Culture "pt-BR" °

-UlCulture "pt-BR"

Usar opcgbes

$sessao = New-PSSession -ComputerName "Server01" -SessionOption $opcoes

Configuracdo padrdo de sessao
$PSDefaultParameterValues = @{

'New-PSSession:SessionOption' = $opcoes

}

5.2.4 Gerenciamento de Miiltiplos Computadores

Exemplo 1: Coletar Informacoes de Multiplos Servidores
Lista de servidores
$servidores = @(

"Server01",

"Server02",

"Server03",

"Server04",

"Server05"

Criar sessées
Write-Host "Conectando aos servidores..." -ForegroundColor Yellow

$sessoes = New-PSSession -ComputerName $servidores -ErrorAction
SilentlyContinue

Verificar conex6es bem-sucedidas
$conectados = $sessoes | Select-Object -ExpandProperty ComputerName
$falhas = Compare-Object $servidores $conectados |

Where-Object Sidelndicator -eq '<='|

Select-Object -ExpandProperty InputObject

if ($falhas) {
Write-Host "Falha ao conectar:" -ForegroundColor Red

$falhas | ForEach-Object { Write-Host" - $_" -ForegroundColor Red }

Coletar informacées

Write-Host " nColetando informacgades..." -ForegroundColor Yellow

$informacoes = Invoke-Command -Session $sessoes -ScriptBlock {
$0s = Get-Cimlnstance Win32_OperatingSystem
$cs = Get-Cimlnstance Win32_ComputerSystem
$cpu = Get-CimlInstance Win32_Processor

$discos = Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3"

[PSCustomObject]@{
Computador = $env:COMPUTERNAME
SO = $0s.Caption
Versao = $os.Version
UltimoReboot = $o0s.LastBootUpTime
Processador = $cpu.Name
Nucleos = $cpu.NumberOfCores
MemoriaGB = [math]::Round($cs.TotalPhysicalMemory / 1GB, 2)
Discos = $discos | ForEach-Object {
[PSCustomObject]@{
Letra=$_.DevicelD
TamanhoGB = [math]::Round($_.Size / 1GB, 2)
LivreGB = [math]::Round($_.FreeSpace / 1GB, 2)

UsoPct = [math]::Round((($_.Size - $_.FreeSpace) / $_.Size) * 100, 2)

Exibir resultados

$informacoes | ForEach-Object {

Write-Host " n=== $($_.Computador) ===" -ForegroundColor Cyan
Write-Host "SO: $($_.S0)" -ForegroundColor White

Write-Host "Versdo: $($_.Versao)" -ForegroundColor White

Write-Host "Ultimo Reboot: $($_.UltimoReboot)" -ForegroundColor White

Write-Host "CPU: $($_.Processador) ($($_.Nucleos) nucleos)" -ForegroundColor
White

Write-Host "Memoaria: $($_.MemoriaGB) GB" -ForegroundColor White
Write-Host "Discos:" -ForegroundColor White
$_.Discos | ForEach-Object {

$cor =if ($_.UsoPct -gt 80) { 'Red' } elseif ($_.UsoPct -gt 70) { 'Yellow' } else {
'Green'}

Write-Host " $($_.Letra) $($_.TamanhoGB) GB - Livre: $($_.LivreGB) GB
($($_.UsoPct)% usado)" -ForegroundColor $cor

}

Exportar para CSV
$relatorio = foreach ($info in $informacoes) {
foreach ($disco in $info.Discos) {
[PSCustomObject]@{

Computador = $info.Computador
SO = $info.SO
Versao = $info.Versao
UltimoReboot = $info.UltimoReboot
CPU = $info.Processador
Nucleos = $info.Nucleos
MemoriaGB = $info.MemoriaGB
Disco = $disco.Letra

DiscoTamanhoGB = $disco.TamanhoGB

DiscoLivreGB = $disco.LivreGB

DiscoUsoPct = $disco.UsoPct

$relatorio | Export-Csv "Inventario_Servidores_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv" -NoTypelnformation

Fechar sessoes

Remove-PSSession -Session $sessoes

Write-Host " nv Coleta concluida!" -ForegroundColor Green
Exemplo 2: Executar Manutencao em Miuiltiplos Servidores

Arquivo: ManutencaoServidores.ps1

<#
.SYNOPSIS
Executa tarefas de manutengcdo em multiplos servidores

#>

param(
[Parameter(Mandatory=$true)]

[string[]]$Servidores,

[switch]$LimparTemp,
[switch]$AtualizarWindows,

[switch]$ReiniciarServicos,

[switch]$ColetarLogs,

[string]$LogPath = "\Maintenancelogs"

Criar diretdrio de logs
if (-not (Test-Path $LogPath)) {

New-Item -Path $LogPath -IltemType Directory | Out-Null

$logFile = Join-Path $LogPath "Manutencao_$(Get-Date -Format
'yyyyMMdd_HHmMmss').log"

function Write-Maintenancelog {
param(
[string]$Message,

[string]$Level = "INFO"

$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss

$logEntry = "[$timestamp] [$Level] $Message"

$color = switch ($Level) {
"INFO" { "White" }
"SUCCESS" {"Green"}
"WARNING" { "Yellow" }
"ERROR" {"Red"}

default{"Gray" }

Write-Host $logEntry -ForegroundColor $color

$logEntry | Out-File -FilePath $logFile -Append -Encoding UTF8

Write-Maintenancelog "===== INiCIO DA MANUTENGCAQ ====="

Write-Maintenancelog "Servidores alvo: $($Servidores -join ', ')"

Criar sessées
Write-Maintenancelog "Estabelecendo conexdes..." -Level "INFO"

$sessoes = @)

foreach ($servidor in $Servidores) {
try {
$sessao = New-PSSession -ComputerName $servidor -ErrorAction Stop
$sessoes += $sessao
Write-MaintenancelLog "v Conectado: $servidor" -Level "SUCCESS"
}

catch{

Write-MaintenancelLog " X Falha ao conectar: $servidor - $_" -Level "ERROR"

if ($sessoes.Count -eq 0) {

Write-MaintenancelLog "Nenhuma conexdo estabelecida. Encerrando." -Level
"ERROR"

exit 1

Tarefa 1: Limpar arquivos temporarios
if ($LimparTemp) {

Write-Maintenancelog " n--- LIMPEZA DE ARQUIVOS TEMPORARIOS ---" -Level
"INFO"

$resultados = Invoke-Command -Session $sessoes -ScriptBlock {
$caminhos = @(
"$env:TEMP",
"C:\Windows\Temp",

"C:\Windows\Prefetch"

$totalRemovido =0

$erros = @)

foreach ($caminho in $caminhos) {
if (Test-Path $caminho) {

try{

$arquivos = Get-Childltem -Path $caminho -Recurse -File -ErrorAction
SilentlyContinue |

Where-Object LastWriteTime -lt (Get-Date).AddDays(-7)

$tamanho = ($arquivos | Measure-Object -Property Length -Sum).Sum

$totalRemovido += $tamanho

$arquivos | Remove-ltem -Force -ErrorAction SilentlyContinue

catch{

$erros +="Erro em $caminho : $_

[PSCustomObject]@{
Computador = $env:COMPUTERNAME
RemovidoMB = [math]::Round($totalRemovido / 1MB, 2)

Erros = $erros

foreach ($resultado in $resultados) {

Write-Maintenancelog "$($resultado.Computador): Removidos
$($resultado.RemovidoMB) MB" -Level "SUCCESS"

if ($resultado.Erros) {
foreach ($erro in $resultado.Erros) {

Write-MaintenancelLog" $erro" -Level "WARNING"

Tarefa 2: Reiniciar servigos
if ($ReiniciarServicos) {

Write-Maintenancelog " n--- REINICIO DE SERVICOS ---" -Level "INFO"

$servicosReiniciar = @("wuauserv", "BITS")

$resultados = Invoke-Command -Session $sessoes -ScriptBlock {

param($Servicos)

$resultados = @()
foreach ($nomeServico in $Servicos) {
try {
$servico = Get-Service -Name $nomeServico -ErrorAction Stop
if ($servico.Status -eq 'Running’) {
Restart-Service -Name $nomeServico -Force -ErrorAction Stop
$resultados +="$nomeServico reiniciado com sucesso"
}else{

$resultados +="$nomeServico ndo estava em execugao"

}

catch{

$resultados +="Erro ao reiniciar $nomeServico: $_"

[PSCustomObject]@{
Computador = $env:COMPUTERNAME

Resultados = $resultados

}

} -ArgumentList (,$servicosReiniciar)

foreach ($resultado in $resultados) {

Write-Maintenancelog "$($resultado.Computador):" -Level "INFO"
foreach ($msg in $resultado.Resultados) {

Write-MaintenancelLog" $msg" -Level "SUCCESS"

Tarefa 3: Coletar logs
if ($ColetarLogs) {

Write-MaintenancelLog " n--- COLETA DE LOGS ---" -Level "INFO"

$logsPath = Join-Path $LogPath "ServerLogs_$(Get-Date -Format
'yyyyMMdd_HHmMmmss')"

New-Item -Path $logsPath -ltemType Directory | Out-Null

foreach ($sessao in $sessoes){
$servidor = $sessao.ComputerName

Write-Maintenancelog "Coletando logs de $servidor..." -Level "INFO"

try {

$eventos = Invoke-Command -Session $sessao -ScriptBlock {
Get-WinEvent -LogName System -MaxEvents 100 |
Where-Object LevelDisplayName -in "Error", "Warning" |

Select-Object TimeCreated, LevelDisplayName, ProviderName, Message

$arquivolLog = Join-Path $logsPath "$servidor’ _EventLog.csv"

$eventos | Export-Csv -Path $arquivoLog -NoTypelnformation

Write-MaintenancelLog" v Logs salvos: $arquivoLog" -Level "SUCCESS"
}

catch{

Write-MaintenancelLog" X Erro ao coletar logs: $_" -Level "ERROR"

Relatdrio final

Write-Maintenancelog " n--- RELATORIO FINAL ---" -Level "INFO"

$statusFinal = Invoke-Command -Session $sessoes -ScriptBlock {

$0s = Get-Cimlnstance Win32_OperatingSystem

[PSCustomObject]@{
Computador = $env:COMPUTERNAME
Uptime = (Get-Date) - $0s.LastBootUpTime

MemoriaLivrePct = [math]::Round(($0s.FreePhysicalMemory /
$os.TotalVisibleMemorySize) * 100, 2)

ProcessosAtivos = (Get-Process).Count

foreach ($status in $statusFinal) {
Write-Maintenancelog "$($status.Computador):" -Level "INFO"

Write-MaintenancelLog " Uptime: $($status.Uptime.Days) dias,
$($status.Uptime.Hours) horas" -Level "INFO"

Write-MaintenancelLog " Memodria Livre: $($status.MemoriaLivrePct)%" -Level
"INFO"

Write-MaintenancelLog " Processos Ativos: $($status.ProcessosAtivos)" -Level
"INFO"

}

Fechar sessoes
Remove-PSSession -Session $sessoes

Write-MaintenanceLog " n===== MANUTENCAO CONCLUIDA ====="-Level
"SUCCESS"

Write-Maintenancelog "Log completo salvo em: $logFile" -Level "INFO"
Uso:
Executar todas as tarefas

A\ManutencaoServidores.ps1 -Servidores "Server01", "Server02" -LimparTemp -
ReiniciarServicos -ColetarLogs

Apenas limpeza

\ManutencaoServidores.ps1 -Servidores "Server01", "Server02", "Server03" -
LimparTemp

Coletar logs de todos os servidores

.\ManutencaoServidores.ps1 -Servidores (Get-Content .\servidores.txt) -
ColetarLogs

5.2.5 Gerenciamento Remoto com CIM/WMI

CIM (Common Information Model) é o sucessor do WMI e funciona nativamente
com PowerShell Remoting.

Criar sessao CIM

$sessaoCim = New-CimSession -ComputerName "Server01"

Usar sessgo CIM

Get-CimlInstance -ClassName Win32_OperatingSystem -CimSession $sessaoCim

Multiplas sessées CIM

$sessoesCim = New-CimSession -ComputerName "Server01", "Server02",
"Server03"

Query em multiplos servidores

Get-Cimlnstance -ClassName Win32_Service -Filter "State='Running' -
CimSession $sessoesCim |

Select-Object PSComputerName, Name, DisplayName, State

Invocar método CIM

$servico = Get-CimInstance -ClassName Win32_Service -Filter
-CimSession $sessaoCim

"Name='wuauserv

Invoke-CimMethod -InputObject $servico -MethodName StopService

Fechar sessées

Remove-CimSession -CimSession $sessoesCim

5.2.6 Tratamento de Erros em Operacoes Remotas

Capturar erros de conexao

$servidores ="Server01", "Serverlnexistente", "Server02"

$sessoes = @)

foreach ($servidor in $servidores) {
try {
$sessao = New-PSSession -ComputerName $servidor -ErrorAction Stop
$sessoes += $sessao

Write-Host "v Conectado: $servidor" -ForegroundColor Green

catch{

Write-Host " X Falha: $servidor - $($_.Exception.Message)" -ForegroundColor
Red

}

Tratamento durante Invoke-Command
$resultados = Invoke-Command -ComputerName $servidores -ScriptBlock {

try {

Get-Service -Name "Servicolnexistente" -ErrorAction Stop
}
catch{
[PSCustomObject]@{
Computador = $env:COMPUTERNAME

Erro = $_.Exception.Message

}

} -ErrorAction SilentlyContinue -ErrorVariable errosRemotOs

Analisar erros

if ($errosRemotos) {
Write-Host "Erros encontrados:" -ForegroundColor Red
$errosRemotos | ForEach-Object {

Write-Host " $($_.TargetObject): $($_.Exception.Message)" -ForegroundColor
Red

}

}
6. MELHORES PRATICAS E SEGURANGA

6.1 Gestao de Credenciais e Seguranca em Scripts
6.1.1 Fundamentos de Seguranca no PowerShell
Por Que a Seguranca é Critica?
Scripts PowerShell frequentemente:
e Acessam recursos criticos do sistema
o Conectam a servidores e bancos de dados
e Manipulam dados sensiveis
e Executam com privilégios elevados
e S3ao compartilhados entre equipes
Principios fundamentais:
1. Least Privilege: Executar com privilégios minimos necessarios
2. Defense in Depth: Multiplas camadas de segurancga
3. Never Trust User Input: Validar todas as entradas
4. Secure by Default: Configuragdes seguras por padrao
5. Audit and Monitor: Registrar e monitorar atividades
6.1.2 Gestao de Credenciais

X Praticas INSEGURAS (Nunca Fazer)

X NUNCA: Hardcode de senha em texto plano
$username ="admin"

$password = "SenhaSecreta123"

X NUNCA: Senha em string
$senha ="SenhaSecreta123"

$securePassword = ConvertTo-SecureString $senha -AsPlainText -Force

X NUNCA: Credenciais em comentarios
Usuario: admin

Senha: MinhaSenha123

X NUNCA: Varidveis de ambiente para senhas

$env:DB_PASSWORD = "SenhaDoDb123"

X NUNCA: Pardmetros de linha de comando com senha
Ascript.ps1 -Password "MinhaSenha"

Get-Credential - Solicitagcao Interativa

Método seguro: solicitar credenciais em tempo de execugéao

$cred = Get-Credential

Com nome de usuario pré-preenchido

$cred = Get-Credential -UserName "DOMINIO\Usuario"

Com mensagem customizada

$cred = Get-Credential -Message "Digite suas credenciais para acessar o servidor
SQLII

Usar credencial
Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock {

Get-Process

Extrair componentes (quando absolutamente necessario)

$username = $cred.UserName

$password = $cred.GetNetworkCredential().Password # 4 Expée senha em texto
plano

SecureString - Armazenamento Seguro em Memdria

Criar SecureString

$securePassword = ConvertTo-SecureString "MinhaSenh@" -AsPlainText -Force

Criar PSCredential com SecureString
$username = "DOMINIO\Usuario"

$cred = New-Object System.Management.Automation.PSCredential($username,
$securePassword)

Converter SecureString para texto plano (quando necessario)

$BSTR =
[System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($securePasswor
d)

$plainPassword =
[System.Runtime.InteropServices.Marshal]::PtrToStringAuto($BSTR)

[System.Runtime.InteropServices.Marshal]::ZeroFreeBSTR($BSTR) # Limpar
mem©dria

Verificar se SecureString esta vazia
if ($securePassword.Length -eq 0) {

Write-Host "Senha vazia"

}

Armazenamento Persistente de Credenciais

Método 1: Export/Import-Clixml (Vinculado ao Usuario e Maquina)
Salvar credencial

$cred = Get-Credential

$cred | Export-Clixml -Path "C:\Credentials\mycred.xml"

Carregar credencial

$cred = Import-Clixml -Path "C:\Credentials\mycred.xml"

4 IMPORTANTE: O arquivo s6 pode ser descriptografado:
- Pelo mesmo usuario
#- Na mesma maquina

#- Com a mesma instalacdo do Windows

Exemplo pratico: Script que usa credencial salva

$credPath ="C:\Credentials\sqlcred.xml"

if (-not (Test-Path $credPath)) {

Write-Host "Primeira execucgao - configure suas credenciais:" -ForegroundColor
Yellow

$cred = Get-Credential -Message "Credenciais SQL Server"
$cred | Export-Clixml -Path $credPath
} else {

$cred = Import-Clixml -Path $credPath

Usar credencial

Invoke-Sglcmd -Serverinstance "SQLServer" -Credential $cred -Query "SELECT
@@VERSION"

Método 2: ConvertFrom-SecureString / ConvertTo-SecureString (com Chave)
Gerar chave AES (256-bit)
$key = New-Object Byte[] 32

[Security.Cryptography.RNGCryptoServiceProvider]::Create().GetBytes($key)

Salvar chave em arquivo seguro

$key | Out-File "C:\Secure\aes.key" -Encoding Byte

Criptografar senha com chave

$securePassword = Read-Host "Digite a senha" -AsSecureString

$encryptedPassword = $securePassword | ConvertFrom-SecureString -Key $key

Salvar senha criptografada

$encryptedPassword | Out-File "C:\Secure\password.txt"

Carregar chave

$key = Get-Content "C:\Secure\aes.key" -Encoding Byte

Carregar e descriptografar senha
$encryptedPassword = Get-Content "C:\Secure\password.txt"

$securePassword = $encryptedPassword | ConvertTo-SecureString -Key $key

Criar credencial
$username = "DOMINIO\Usuario"

$cred = New-Object System.Management.Automation.PSCredential($username,
$securePassword)

4 IMPORTANTE: Proteja o arquivo de chave com ACLs adequadas!
Proteger arquivo de chave com ACLs:

Remover heranca e permissées existentes

$acl = Get-Acl "C:\Secure\aes.key"

$acl.SetAccessRuleProtection($true, $false)

Adicionar permissao apenas para o usuario atual

$rule = New-Object System.Security.AccessControl.FileSystemAccessRule(

$env:USERNAME,
"FullControl",
"Allow"

)
$acl.AddAccessRule($rule)

Aplicar ACL

Set-Acl "C:\Secure\aes.key" -AclObject $acl

Verificar permissées

Get-Acl "C:\Secure\aes.key" | Format-List

Windows Credential Manager (CredentialManager Module)
Instalar modulo (se néo estiver instalado)

Install-Module -Name CredentialManager -Force

Salvar credencial no Credential Manager

New-StoredCredential -Target "MeuServidor" -UserName "DOMINIO\Usuario" -
Password "MinhaSenh@" -Persist LocalMachine

Recuperar credencial

$cred = Get-StoredCredential -Target "MeuServidor"

Listar credenciais armazenadas

Get-StoredCredential

Remover credencial

Remove-StoredCredential -Target "MeuServidor"

Exemplo pratico
function Get-SafeCredential {
param(
[string]$Target,

[string]$Message = "Digite suas credenciais"

try {

Tentar obter do Credential Manager
$cred = Get-StoredCredential -Target $Target -ErrorAction Stop
if ($cred) {

Write-Host "Credencial recuperada do Credential Manager" -
ForegroundColor Green

return $cred

}

catch{
Se nao existir, solicitar e salvar

Write-Host "Credencial ndo encontrada. Configurando..." -ForegroundColor
Yellow

$cred = Get-Credential -Message $Message

if ($cred) {
New-StoredCredential -Target $Target °
-UserName $cred.UserName *
-Password $cred.GetNetworkCredential().Password *

-Persist LocalMachine

Write-Host "Credencial salva no Credential Manager" -ForegroundColor
Green

return $cred

return $null

Usar funcéo

$cred = Get-SafeCredential -Target "SQLServer" -Message "Credenciais SQL"
Azure Key Vault (Ambientes Enterprise)

Instalar mdédulo Azure

Install-Module -Name Az.KeyVault -Force

Conectarao Azure

Connect-AzAccount

Obter segredo do Key Vault
$secretName = "DatabasePassword"

$vaultName = "MyKeyVault"

$secret = Get-AzKeyVaultSecret -VaultName $vaultName -Name $secretName

$securePassword = $secret.SecretValue

Criar credencial

$username = Get-AzKeyVaultSecret -VaultName $vaultName -Name
"DatabaseUser"

$cred = New-Object System.Management.Automation.PSCredential(

$username.SecretValueText,

$securePassword

Exemplo: Funggo para obter credencial do Key Vault
function Get-KeyVaultCredential {
param(
[Parameter(Mandatory=$true)]

[string]$VaultName,

[Parameter(Mandatory=$true)]

[string]$UsernameSecret,

[Parameter(Mandatory=$true)]

[string]$PasswordSecret

try {

$username = (Get-AzKeyVaultSecret -VaultName $VaultName -Name
$UsernameSecret).SecretValueText

$password = (Get-AzKeyVaultSecret -VaultName $VaultName -Name
$PasswordSecret).SecretValue

return New-Object
System.Management.Automation.PSCredential($username, $password)

}
catch{
Write-Error "Erro ao obter credencial do Key Vault: $_"

return $null

Usar funcéo

$cred = Get-KeyVaultCredential -VaultName "MyVault" -UsernameSecret "DBUser"
-PasswordSecret "DBPass"

6.1.3 Validacao e Sanitizacao de Entrada

Validacao de Parametros

Validagbes de pardmetros

param(
N&o pode ser nulo ou vazio
[Parameter(Mandatory=$true)]
[ValidateNotNullOrEmpty()]

[string]$Nome,

Comprimento da string
[ValidateLength(8, 50)]

[string]$Senha,

Intervalo numeérico
[ValidateRange(1, 100)]

[int]$Porcentagem,
Conjunto de valores permitidos
[ValidateSet("Dev", "QA", "Prod")]

[string]$Ambiente,

Padrdo regex

[ValidatePattern("*[A-Z]{2\d{4}$")]

[string]$Codigo,

Script de validagcdo customizado
[ValidateScript({
Test-Path $_ -PathType Container

)

[string]$Caminho,

Validacao de contagem em arrays
[ValidateCount(1, 10)]

[string[]]$Servidores

Exemplo: Validacéo de IP
param(

[ValidatePattern("~((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-
9]1[01]?[0-9][0-9]?)$")]

[string]$EnderecolP

Exemplo: Validagcdo de email
param(
[ValidatePattern(""[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")]

[string]$Email

Exemplo: Validacdo de CPF

param(
[ValidatePattern("~\d{3N\.\d{3\.\d{3}-\d{2}$")]
[string]$CPF

)

Sanitizagao de Entrada

Funcao para sanitizar entrada

function ConvertTo-SafeString {
param(

[string]$InputString,

[switch]$AllowSpaces

Remover caracteres perigosos

$safe = $InputString -replace '[*\w\s-],

if (-not $AllowSpaces) {

$safe = $safe -replace '\s', "

Limitar tamanho
if ($safe.Length -gt 100) {

$safe = $safe.Substring(0, 100)

return $safe.Trim()

Uso

$userlnput = Read-Host "Digite o nome do arquivo"
$safeFilename = ConvertTo-SafeString -InputString $userinput

New-Item -Path "C:\Files\$safeFilename.txt" -ltemType File

Sanitizar caminhos
function Test-SafePath {

param([string]$Path)

Verificar caracteres invélidos
$invalidChars = [System.|O.Path]::GetlnvalidPathChars()
foreach ($char in $invalidChars) {

if ($Path.Contains($char)) {

throw "Caminho contém caractere invalido: $char"

Verificar path traversal
if ($Path -match "\.\.|~") {

throw "Caminho contém sequéncia suspeita”

Resolver para caminho absoluto

$resolvedPath = [System.|O.Path]::GetFullPath($Path)

Verificar se esta dentro do diretério permitido
$allowedBase = "C:\AllowedDirectory"
if (-not $resolvedPath.StartsWith($allowedBase)) {

throw "Caminho fora do diretério permitido”

return $resolvedPath

Sanitizar SQL (prevencgéao de SQL Injection)
function Invoke-SafeSglQuery {
param(

[string]$Query,

[hashtable]$Parameters

NUNCA concatenar strings diretamente

X ERRADO: "SELECT * FROM Users WHERE Name = '$SuserName""

[&Z CORRETO: Usar pardmetros

$connection = New-Object
System.Data.SqlClient.SqlConnection($connectionString)

$command = $connection.CreateCommand()

$command.CommandText = $Query

foreach ($param in $Parameters.GetEnumerator()) {

$command.Parameters.AddWithValue($param.Key, $param.Value) | Out-Null

Executar query...

Uso

Invoke-SafeSqlQuery -Query "SELECT * FROM Users WHERE Name = @Name" -
Parameters @{

"@Name" = $userName
}
6.1.4 Execution Policy e Script Signing
Execution Policy
Verificar politica atual
Get-ExecutionPolicy

Get-ExecutionPolicy -List

Definir politicas por escopo
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

Set-ExecutionPolicy -ExecutionPolicy AllSigned -Scope LocalMachine

Bypass temporario (apenas para sessgo)

powershell.exe -ExecutionPolicy Bypass -File script.ps1

Niveis de Execution Policy:

- Restricted: Nao executa scripts (padrao Windows cliente)

- AllSigned: Apenas scripts assinados

- RemoteSigned: Scripts locais livres, remotos assinados (recomendado)
- Unrestricted: Todos o0s scripts (avisa para remotos)

- Bypass: Nenhuma verificacao

- Undefined: Remove politica do escopo

Assinatura Digital de Scripts

Criar certificado de assinatura de cédigo (desenvolvimento):

Criar certificado self-signed (desenvolvimento apenas)

$cert = New-SelfSignedCertificate *
-Type CodeSigningCert °
-Subject "CN=PowerShell Code Signing" -
-CertStorelLocation "Cert:\CurrentUser\My" *

-KeyExportPolicy Exportable

Mover para Trusted Publishers

$store = New-Object System.Security.Cryptography.X509Certificates.X509Store(
"TrustedPublisher",
"CurrentUser"

)

$store.Open("ReadWrite")

$store.Add($cert)

$store.Close()

Mover para Root

$store = New-Object System.Security.Cryptography.X509Certificates.X509Store(
"Root",
"CurrentUser"

)

$store.Open("ReadWrite")

$store.Add($cert)

$store.Close()

Assinar script:

Obter certificado

$cert = Get-Childltem Cert:\CurrentUser\My -CodeSigningCert | Select-Object -
First 1

Assinar script

Set-AuthenticodeSignature -FilePath "C:\Scripts\MeuScript.ps1" -Certificate $cert

Verificar assinatura

Get-AuthenticodeSignature -FilePath "C:\Scripts\MeuScript.ps1"

Funcao para assinar todos os scripts em diretdrio
function Sign-AllScripts {
param(
[Parameter(Mandatory=$true)]

[string]$Path,

[Parameter(Mandatory=$true)]

[System.Security.Cryptography.X509Certificates.X509Certificate2]$Certificate

Get-Childltem -Path $Path -Filter "*.ps1" -Recurse | ForEach-Object {

Write-Host "Assinando: $($_.Name)" -ForegroundColor Yellow

try {

Set-AuthenticodeSignature -FilePath $_.FullName -Certificate $Certificate

Write-Host " v Assinado com sucesso" -ForegroundColor Green

}

catch{

Write-Host" X Erro: $_" -ForegroundColor Red

Usar funcéo

$cert = Get-Childltem Cert:\CurrentUser\My -CodeSigningCert | Select-Object -
First 1

Sign-AllScripts -Path "C:\Scripts" -Certificate $cert
6.1.5 Logging e Auditoria

Transcript - Registro de Sessao

Iniciar transcript

Start-Transcript -Path "C:\Logs\Session_$(Get-Date -Format
'yyyyMMdd_HHmMmmss').log"

Comandos executados...
Get-Process

Get-Service

Parar transcript

Stop-Transcript

Transcript automatico em script

$transcriptPath = "C:\Logs\Script_$(Get-Date -Format 'yyyyMMdd_HHmmss').log"

try {

Start-Transcript -Path $transcriptPath -ErrorAction Stop

Codigo do script...

Write-Host "Executando operagdes..."

Stop-Transcript

catch{
if ((Get-Command Stop-Transcript -ErrorAction SilentlyContinue)) {

Stop-Transcript

throw
}
Script Block Logging (Auditoria Nativa)

Habilitar Script Block Logging via Group Policy ou Registry

Via Registry (requer reinicio)

$regPath =
"HKLMASOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging"

if (-not (Test-Path $regPath)) {

New-Item -Path $regPath -Force | Out-Null

New-ItemProperty -Path $regPath -Name "EnableScriptBlockLogging" -Value 1 -
PropertyType DWORD -Force

Visualizar logs (Event Viewer)

Get-WinEvent -LogName "Microsoft-Windows-PowerShell/Operational” |
Where-ObjectId -eq 4104 |
Select-Object -First 10 TimeCreated, Message

Sistema de Logging Customizado

Sistema completo de logging

enum LoglLevel {
DEBUG =0

INFO =1

WARNING =2
ERROR=3

CRITICAL=4

class Logger {
[string]$LogPath
[string]$LogFile
[LogLevel]$MinLevel
[bool]$ConsoleOutput

[bool]$FileOutput

Logger([string]$logPath) {
$this.LogPath = $logPath
$this.LogFile = "Log_$(Get-Date -Format 'yyyyMMdd').log"
$this.MinLevel = [LogLevel]::INFO
$this.ConsoleOutput = $true

$this.FileOutput = $true

Criar diretdrio se ngo existir
if (-not (Test-Path $this.LogPath)) {

New-Item -Path $this.LogPath -ltemType Directory -Force | Out-Null

[void] Write([string]$message, [LogLevel]$level, [string]$source) {
if ($level -lt $this.MinLevel) {

return

$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss.fff"
$levelStr = $level.ToString().PadRight(8)

$logEntry = "[$timestamp] [$levelStr] [$source] $message"

Console output
if ($this.ConsoleOutput) {
$color = switch ($level) {

([LogLevel]::DEBUG) { "Gray" }
([LogLevel]::INFO){ "White" }
([LogLevel]::WARNING) { "Yellow" }
([LogLevel]::ERROR) { "Red" }
([LogLevel]::CRITICAL) { "Magenta" }

}

Write-Host $logEntry -ForegroundColor $color

File output
if ($this.FileOutput) {
$logFilePath = Join-Path $this.LogPath $this.LogFile

$logEntry | Out-File -FilePath $logFilePath -Append -Encoding UTF8

[void] Debug([string]$message, [string]$source = "SYSTEM") {

$this.Write($message, [LogLevel]::DEBUG, $source)

[void] Info([string]$message, [string]$source = "SYSTEM") {

$this.Write($message, [LogLevel]::INFO, $source)

[void] Warning([string]$message, [string]$source = "SYSTEM") {

$this.Write($message, [LogLevel]::WARNING, $source)

[void] Error([string]$message, [string]$source = "SYSTEM") {

$this.Write($message, [LogLevel]::ERROR, $source)

[void] Critical([string]$message, [string]$source = "SYSTEM") {

$this.Write($message, [LogLevel]::CRITICAL, $source)

[void] Exception([System.Management.Automation.ErrorRecord]$exception,
[string]$source = "SYSTEM") {

$message = "Exception: $($exception.Exception.Message) n"
$message += "ScriptStackTrace: $($exception.ScriptStackTrace)"

$this.Write($message, [LogLevel]::ERROR, $source)

Uso do Logger
$logger = [Logger]::new("C:\Logs\MeuApp")

$logger.MinLevel = [LogLevel]::DEBUG

$logger.Info("Aplicagéo iniciada")
$logger.Debug("Valor da varidvel X: 10")

$logger.Warning("Conexao lenta detectada")

try{

Get-ltem "C:\arquivo_inexistente.txt" -ErrorAction Stop
}
catch{

$logger.Exception($_, "FILESYSTEM")

$logger.Critical("Sistema indisponivel")
6.1.6 Seguranca em Remoting
Configuracao Segura de PSRemoting
Configurar PSRemoting com HTTPS

winrm quickconfig -transport:https

Criar certificado SSL para WinRM

$cert = New-SelfSignedCertificate -DnsName $env:COMPUTERNAME -
CertStorelLocation Cert:\LocalMachine\My

Configurar listener HTTPS

New-ltem -Path WSMan:\Localhost\Listener -Transport HTTPS -Address * -
CertificateThumbPrint $cert.Thumbprint -Force

Verificar listeners

Get-WSManlnstance -ResourceURI winrm/config/listener -Enumerate

Configurar autenticacao
Set-ltem WSMan:\localhost\Service\Auth\Basic -Value $false

Set-ltem WSMan:\localhost\Service\Auth\Kerberos -Value $true

Configurar criptografia
Set-ltem WSMan:\localhost\Service\AllowUnencrypted -Value $false
Just Enough Administration (JEA)

JEA permite delegar privilégios administrativos especificos sem dar acesso
completo.

Criar configuraco de sessdo JEA
$jeaConfigPath ="C:\JEA"

New-Item -Path $jeaConfigPath -IltemType Directory -Force

Criar arquivo de capacidades de role (Role Capability)

$roleCapabilityPath = Join-Path $jeaConfigPath "RestartService.psrc"

@f
GUID = [Guid]::NewGuid().ToString()
Author ='Admin’
Description = 'Permite reiniciar servigos especificos'
ModulesTolmport = 'Microsoft.PowerShell. Management'
VisibleCmdlets = @(
@
Name = 'Restart-Service'
Parameters = @{
Name ='Name'

ValidateSet = 'wuauserv', 'BITS', 'Spooler’

2

'Get-Service'
)
VisibleFunctions = @()
VisibleExternalCommands = @)

} | Export-PSRoleCapabilityFile -Path $roleCapabilityPath

Criar arquivo de configuracdo de sessao

$sessionConfigPath = Join-Path $jeaConfigPath "RestartServiceConfig.pssc"

@f
SchemaVersion ='2.0.0.0'
GUID = [Guid]::NewGuid().ToString()
Author ='Admin’
Description = 'Endpoint JEA para reiniciar servigos'
SessionType = 'RestrictedRemoteServer'
TranscriptDirectory = 'C:\JEATranscripts'
RunAsVirtualAccount = $true
RoleDefinitions = @{
'DOMINIO\ServiceOperators' = @{

RoleCapabilityFiles = $roleCapabilityPath

}

} | Export-PSSessionConfigurationFile -Path $sessionConfigPath

Registrar configuracéo

Register-PSSessionConfiguration -Name "RestartService" -Path
$sessionConfigPath -Force

Usuarios do grupo ServiceOperators podem conectar:

Enter-PSSession -ComputerName localhost -ConfigurationName RestartService

Dentro da sessdo, apenas comandos permitidos funcionam
Get-Service wuauserv
Restart-Service -Name wuauserv # £ Permitido
Stop-Process -Name notepad ~ # X Negado
6.1.7 Checklist de Seguranca
Template de script seguro
<#
.SYNOPSIS

[Descricao do script]
.NOTES

Autor: [Nome]

Data: [Data]

Versgo: 1.0

Requer: PowerShell 5.1+

Execucéo: Requer privilégios elevados

#>

[CmdletBinding()]

param(
Par@metros com validacédo adequada
[Parameter(Mandatory=$true)]
[ValidateNotNullOrEmpty()]

[string]$Parametro1,

[ValidateSet("Valor1", "Valor2")]

[string]$Parametro2 = "Valor1"

Requer versdo minima do PowerShell

#Requires -Version 5.1

Requer execugcdo como administrador (se necessario)

#Requires -RunAsAdministrator

Strict mode (boas praticas)
Set-StrictMode -Version Latest

$ErrorActionPreference = "Stop"

Logging
$logPath = "C:\Logs\MeuScript"
if (-not (Test-Path $logPath)) {

New-Item -Path $logPath -IltemType Directory -Force | Out-Null

$transcriptFile = Join-Path $logPath "Transcript_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

Start-Transcript -Path $transcriptFile

try{

Validar ambiente

Write-Host "Validando ambiente..." -ForegroundColor Yellow

if (-not (Test-Path "C:\RequiredPath")) {

throw "Diret6rio obrigatério ndo encontrado

Obter credenciais de forma segura

$credPath = "C:\Secure\credentials.xml"

if (Test-Path $credPath) {
$cred = Import-Clixml -Path $credPath
}else{
$cred = Get-Credential -Message "Digite suas credenciais"

$cred | Export-Clixml -Path $credPath

Validar credenciais
if (-not $cred) {

throw "Credenciais ndo fornecidas"

Cddigo principal do script

Write-Host "Executando operacgdes..." -ForegroundColor Green

#... codigo aqui ...

Write-Host "Script concluido com sucesso!" -ForegroundColor Green
}
catch{

Write-Host "ERRO: $($_.Exception.Message)" -ForegroundColor Red

Write-Host "Linha: $($_.InvocationInfo.ScriptLineNumber)" -ForegroundColor
Red

Write-Host "StackTrace: $($_.ScriptStackTrace)" -ForegroundColor Red
exit 1

}

finally {
#Limpeza

Stop-Transcript

Limpar varidveis sensiveis
if ($cred) {

Remove-Variable -Name cred -ErrorAction SilentlyContinue

}

6.2 Padronizacao e Documentacao

6.2.1 Convencoes de Nomenclatura
Convencoes PowerShell

[Cmdlets: Verbo-Substantivo (PascalCase)
Get-Process

Set-Location

New-ltem

4 Funcées: Verbo-Substantivo (PascalCase)
function Get-UserIinformation {}

function Set-ServerConfiguration { }

[Z Varidveis: camelCase ou PascalCase

$userName ="Joao"

$serverList = @()

$UserName ="Jodo" # Também aceitével

4 Constantes: UPPER_CASE ou PascalCase
$MAX_RETRIES =5

$ConnectionTimeout = 30

4 Parametros: PascalCase
param(
[string]$ComputerName,

[int]$RetryCount

[Booleanos: Prefixo Is/Has/Should
$isEnabled = $true
$hasAccess = $false

$shouldContinue = $true

X Evitar abreviacées ndo 6bvias
$usrNm ="Joao" # X Ruim

$userName ="Jodo" # & Bom

X Evitar underscores em funcées publicas
function Get_User_Info {} # X Ruim

function Get-UserInfo{} # £ Bom
Verbos Aprovados

Sempre usar verbos aprovados

Get-Verb | Sort-Object Verb

Grupos principais:

Common: Get, Set, New, Remove, Add, Clear, Copy, Move, etc.
Data: Import, Export, Convert, Select, Compare, etc.

Lifecycle: Start, Stop, Restart, Suspend, Resume, etc.

Diagnostic: Debug, Test, Trace, Measure, etc.

Communications: Connect, Disconnect, Read, Write, Send, Receive, etc.

Verificar se verbo é aprovado

Get-Verb -Verb "Fetch" # Nao é aprovado - usar Get
Get-Verb -Verb "Get" # & Aprovado

6.2.2 Estrutura de Scripts e Médulos

Estrutura de Script Profissional

<#

.SYNOPSIS

Breve descricdo de uma linha do que o script faz

.DESCRIPTION
Descricao detalhada e completa do script, incluindo:
-Oqueelefaz
- Como funciona
- Requisitos

- Dependéncias

.PARAMETER ComputerName
Nome ou endereco IP do computador alvo.

Aceita multiplos valores via pipeline.

.PARAMETER Credential
Credenciais para conexao remota.

Se nao fornecido, usa credenciais do usuario atual.

.PARAMETER LogPath
Caminho para salvar logs.

Padrao: C:\Logs\ScriptName

.EXAMPLE

AMeuScript.ps1 -ComputerName "Server01"

Executa o script no servidor Server01 usando credenciais atuais.

.EXAMPLE

AMeuScript.ps1 -ComputerName "Server01" -Credential (Get-Credential) -
LogPath "D:\Logs"

Executa o script com credenciais especificas e caminho de log customizado.

.EXAMPLE

Get-Content servers.txt | .\MeuScript.ps1

Processa lista de servidores via pipeline.

INPUTS

System.String

Aceita nomes de computadores via pipeline.

.OUTPUTS
PSCustomObject

Retorna objeto com resultados da operacéao.

.NOTES
Arquivo: MeuScript.ps1
Autor: Joao Silva <joao.silva@empresa.com>
Data Criagao: 15/10/2025
Ultima Modificacdo: 15/10/2025

Versao: 1.0.0

Requisitos:
- PowerShell 5.1 ou superior
- Médulo ActiveDirectory

- Permissoes de administrador

Changelog:

v1.0.0 (15/10/2025) - Versao inicial

.LINK

https://docs.empresa.com/scripts/meuscript

.LINK
https://github.com/empresa/powershell-scripts

#>

#Requires -Version 5.1

#Requires -Modules ActiveDirectory

#Requires -RunAsAdministrator

[CmdletBinding(
SupportsShouldProcess = $true,
Confirmlmpact = 'Medium’
)]
param(
[Parameter(
Mandatory = $true,
Position =0,
ValueFromPipeline = $true,
ValueFromPipelineByPropertyName = $true,
HelpMessage = "Nome do computador alvo"
)]
[ValidateNotNullOrEmpty()]
[Alias("CN", "Server")]

[string[]]$ComputerName,

[Parameter(Mandatory = $false)]
[System.Management.Automation.PSCredential]
[System.Management.Automation.Credential()]

$Credential = [System.Management.Automation.PSCredential]::Empty,

[Parameter(Mandatory = $false)]
[ValidateScript({
if (-not (Test-Path $_)) {

New-Item -Path $_ -ltemType Directory -Force | Out-Null

}

$true

bl
[string]$LogPath = "C:\Logs\MeuScript"

begin {
Configuracgébes iniciais
Set-StrictMode -Version Latest

$ErrorActionPreference = "Stop"

Variaveis do script
$script:StartTime = Get-Date
$script:TotalProcessed = 0
$script:SuccessCount =0

$script:FailureCount =0

Inicializar logging

$logFile = Join-Path $LogPath "Log_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

Start-Transcript -Path $logFile

Write-Verbose "Script iniciado em: $script:StartTime"

Write-Verbose "Parametros: ComputerName=$ComputerName,
LogPath=$LogPath"

Funcées internas
function Write-Log {

param(

[string]$Message,
[ValidateSet("INFO", "WARNING", "ERROR", "SUCCESS")]

[string]$Level = "INFO"

$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
$color = switch ($Level) {

"INFO" {"White"}

"WARNING" { "Yellow" }

"ERROR" {"Red"}

"SUCCESS" {"Green"}

$logMessage = "[$timestamp] [$Level] $Message"

Write-Host $logMessage -ForegroundColor $color

Write-Log "===== INICIO DA EXECUGCAQ ====="-Level "INFO"

process {
foreach ($computer in $ComputerName) {

$script:TotalProcessed++

Write-Log "Processando: $computer” -Level "INFO"

Verificar se deve processar (Whatlf)

if ($PSCmdlet.ShouldProcess($computer, "Processar computador")) {

try {

Cddigo principal aqui

Simulacéo de processamento
Write-Verbose "Conectando a $computer..."

$result = Test-Connection -ComputerName $computer -Count 1 -Quiet

if ($result) {
Write-Log "v $computer acessivel" -Level "SUCCESS"
$script:SuccessCount++

}else{

throw "Computador ndo acessivel"

}

catch{

Write-Log " X Erro ao processar $computer : $($_.Exception.Message)" -
Level "ERROR"

Write-Verbose "StackTrace: $($_.ScriptStackTrace)"

$script:FailureCount++

end {
Finalizacao
$script:EndTime = Get-Date

$duration = $script:EndTime - $script:StartTime

Write-Log "* n===== RESUMO DA EXECUCAOQO ====="-Level "INFO"
Write-Log "Total processado: $script:TotalProcessed" -Level "INFO"
Write-Log "Sucessos: $script:SuccessCount" -Level "SUCCESS"

Write-Log "Falhas: $script:FailureCount" -Level $(if ($script:FailureCount -gt 0) {
"WARNING" } else { "INFO" })

Write-Log "Duracgao: $($duration.ToString(‘hh\:mm\:ss'))" -Level "INFO"

Write-Log "Log salvo em: $logFile" -Level "INFO"

Stop-Transcript

Retornar codigo de saida apropriado
if ($script:FailureCount -gt 0) {

exit 1
}else{

exit 0

}

Estrutura de Médulo

ModuleName/

— ModuleName.psd1 # Manifesto do médulo

F— ModuleName.psm1 # Arquivo principal do médulo
— Public/ # Fungdes publicas (exportadas)

| — Get-Something.ps

| — Set-Something.ps1

| L New-Something.ps1

F— Private/ # Funcdes privadas (internas)
| F— Helper-Function.ps1
| I—Internal-Process.ps‘I
— Classes/ # Classes PowerShell
| I—MyClass.ps1
— Data/ # Arquivos de dados
| I—config.json
F— Tests/ # Testes Pester
| F—ModuleNameTests.ps1
| L Integration.Tests.ps1
— Docs/ # Documentacao
| +— README.md
| I—Examples.md
L LICENSE # Licenca
Exemplo de Manifesto (ModuleName.psd1):
©@{
Informacoées basicas
RootModule ='ModuleName.psm1'
ModuleVersion ='1.0.0'

GUID = "XXXXXXXX=-XXXX=XXXX=-XXXX=-XXXXXKXXKXXX'

Metadados

Author = 'Jodo Silva'
CompanyName ="'Empresa Ltda'
Copyright ='(c) 2025 Empresa Ltda. Todos os direitos reservados.

Description = 'M6dulo para gerenciamento de recursos'

Requisitos
PowerShellVersion ='5.1"

RequiredModules = @('ActiveDirectory', 'SqglServer')

Funcées exportadas

FunctionsToExport = @(
'Get-Something),
'Set-Something),

'New-Something'

CmdletsToExport = @()
VariablesToExport = @()

AliasesToExport = @()

Links
PrivateData = @{
PSData = @{
Tags = @('Management, '"Automation’')
LicenseUri = 'https://github.com/empresa/modulename/LICENSE'
ProjectUri = 'https://github.com/empresa/modulename’
IconUri="

ReleaseNotes ='Versao inicial do médulo'

}

Exemplo de Médulo Principal (ModuleName.psm1):
Carregar funcdes publicas

$publicFunctions = Get-Childltem -Path "$PSScriptRoot\Public*.ps1" -ErrorAction
SilentlyContinue

foreach ($function in $publicFunctions) {
try {
. $function.FullName
Write-Verbose "Funcgéo carregada: $($function.BaseName)"

}

catch{

Write-Error "Erro ao carregar fungéo $($function.BaseName): $_

Carregar fungdes privadas

$privateFunctions = Get-Childltem -Path "$PSScriptRoot\Private*.ps1" -
ErrorAction SilentlyContinue

foreach ($function in $privateFunctions) {

try {

. $function.FullName

}
catch{

Write-Error "Erro ao carregar fungéo privada $($function.BaseName): $_

Exportar apenas fungcées publicas

Export-ModuleMember -Function $publicFunctions.BaseName

Mensagem de carregamento
Write-Verbose "Modulo ModuleName carregado com sucesso”
6.2.3 Comentarios e Documentagao
Comment-Based Help
function Get-UserReport {
<#
.SYNOPSIS

Gera relatdrio de usuarios do Active Directory

.DESCRIPTION
Esta funcédo gera um relatorio detalhado de usuarios do Active Directory,
incluindo informagées como:
- Nome completo
- Email
- Departamento
- Ultimo logon

- Status da conta

O relatdrio pode ser filtrado por OU, departamento ou grupo.

.PARAMETER OrganizationalUnit

Distinguished Name da Unidade Organizacional.

Se ndo especificado, busca em todo o dominio.

.PARAMETER Department
Filtra usuarios por departamento.

Aceita wildcards (*e ?).

.PARAMETER IncludeDisabled
Inclui contas desabilitadas no relatdrio.

Por padrao, apenas contas ativas sgo incluidas.

.PARAMETER ExportPath
Caminho para exportar o relatério em CSV.

Se néo especificado, retorna objetos no console.

.EXAMPLE

Get-UserReport

Gera relatorio de todos os usuarios ativos do dominio.

.EXAMPLE

Get-UserReport -Department "TI" -IncludeDisabled

Gera relatdrio de usuarios do departamento Tl, incluindo contas desabilitadas.

.EXAMPLE

Get-UserReport -OrganizationalUnit "OU=Users,DC=empresa,DC=com” -
ExportPath "C:\Reports\users.csv"

Gera relatdrio de usuarios da OU especificada e exporta para CSV.

.EXAMPLE

Get-UserReport -Department "TI" | Where-Object LastLogon -(t (Get-
Date).AddDays(-30)

Busca usuarios de Tl que ndo fazem logon ha mais de 30 dias.

INPUTS
None

Esta funcdo ndo aceita entrada de pipeline.

.OUTPUTS
PSCustomObject
Retorna objetos customizados com as seguintes propriedades:
- Name: Nome completo
-SamAccountName: Login
- Email: Endereco de email
- do ultimo logon
- Enabled: Status da conta

- OU: Unidade Organizacional

.NOTES
Nome: Get-UserReport
Autor: Jogo Silva
Versgo: 1.0.0

Data: 15/10/2025

Requisitos:

- Mdédulo ActiveDirectory

- Permissoes de leitura no AD

Alteracées:

v1.0.0 (15/10/2025) - Versao inicial

.LINK

Get-ADUser

.LINK
https://docs.empresa.com/powershell/get-userreport

#>

[CmdletBinding()]
param(
[Parameter(Mandatory=%$false)]

[string]$OrganizationalUnit,

[Parameter(Mandatory=%$false)]

[string]$Department,

[switch]$IncludeDisabled,

[Parameter(Mandatory=%$false)]

[ValidateScript({Test-Path (Split-Path $_)})]

[string]$ExportPath

}

Cddigo da funcgao...

Comentarios Inline

function Process-Data{

param($Data)

[Bons comentdrios: Explicam o "porqué"

Normalizar dados antes do processamento para garantir consisténcia
Isso é necessario porque a fonte de dados pode ter formatos variados
$normalizedData = $Data | ForEach-Object {

$_.Trim().ToLower()

Usar hash table para lookup O(1) ao invés de array O(n)
Melhora performance em grandes volumes de dados
$lookup = @{}

foreach ($item in $normalizedData) {

$lookup[$item] = $true

X Comentdrios ruins: Repetem o cédigo

Incrementa contador

$counter++

Loop foreach

foreach ($item in $items) {

Processa item

Process-ltem $item

[Comentérios de TODO, FIXME, HACK

TODO: Implementar cache para melhorar performance
FIXME: Este cddigo falha quando $Data esta vazio

HACK: Workaround temporario para bug #1234 - remover apos fix upstream

[F Comentérios de regido (para cédigo longo)

#region Validacédo de Entrada
if (-not $Data) {
throw "Data ndo pode ser nulo"

}

#endregion

#region Processamento Principal
#... codigo...

#endregion

#region Limpeza e Finalizagcdo
#... codigo...
#endregion

}

6.2.4 Versionamento Semaéantico

Formato: MAJOR.MINOR.PATCH

Exemplo: 2.3.1

MAJOR: Mudancas incompativeis na AP/
- Remocao de fungcbes/pardmetros
- Mudanca de comportamento que quebra cddigo existente

-Exemplo: 1.5.2->2.0.0

MINOR: Nova funcionalidade compativel

-Adicao de novas fungées

- Novos parédmetros opcionais

- Melhorias que ndo quebram codigo existente

-Exemplo: 1.5.2->1.6.0

PATCH: Correcbes de bugs compativeis
- Correcdo de bugs

- Melhorias de performance

- Atualizagcbes de documentacéao

-Exemplo: 1.5.2->1.5.3

Exemplo de controle de versdo em mddulo

©f

ModuleVersion ='2.3.1'

PrivateData = @{
PSData = @{
ReleaseNotes = @"
v2.3.1(15/10/2025)

- [PATCH] Corrigido bug no Get-UserReport com OUs especiais

- [PATCH] Melhorada performance do Export em 20%

v2.3.0(10/10/2025)
- [MINOR] Adicionado pardmetro -IncludeGroups ao Get-UserReport
- [MINOR] Nova fungao Get-UserPermissions

- [PATCH] Corrigidos avisos do PSScriptAnalyzer

v2.0.0 (01/09/2025)
- [MAJOR] BREAKING: Removido parametro -LegacyFormat

- [MAJOR] BREAKING: Get-UserReport agora retorna [PSCustomObject] ao invés
de [Hashtable]

- [MINOR] Adicionado suporte a pipeline
- [MINOR] Melhorado tratamento de erros

'@

}
6.2.5 Code Review Checklist

<#

CHECKLIST DE REVISAO DE CODIGO

O FUNCIONALIDADE
1O cddigo faz o que deveria fazer?
1A légica esta correta?
L1 Todos os casos extremos estdo cobertos?

[1Ha validacao de entrada adequada?

O LEGIBILIDADE

[0 O cadigo é facil de entender?
O Nomes de variaveis e fungbes sdo descritivos?
1 Convencées de nomenclatura sdo seguidas?

[1Ha comentarios onde necessario (nd0 em excesso)?

O SEGURANCA
1 Credenciais sdo gerenciadas de forma segura?
[IN&o ha hardcoding de senhas ou segredos?
Ul Entrada do usuario é validada e sanitizada?
1 Ha tratamento adequado de erros?

[Logging ndo expde informacgbes sensiveis?

O PERFORMANCE
[Algoritmos séo eficientes?
L1N&o ha loops desnecessarios?
1 Recursos sao liberados adequadamente?

[1Ha uso apropriado de pipeline?

O MANUTENIBILIDADE
[0 Cdédigo esta bem estruturado?
[0 Fungées tém responsabilidade tnica?
[0 Ha duplicagcao de cdodigo?

[0 Dependéncias sédo claras?

O TESTABILIDADE
[0 Cddigo é testavel?
0 Ha testes unitarios?

[0 Casos de erro estao testados?

[0 DOCUMENTACAO
[1Ha comment-based help?
U Parédmetros estdo documentados?
1 Exemplos sao fornecidos?

OO README esta atualizado?

O PADROES
[0 Segue PowerShell Style Guide?
1 PSScriptAnalyzer passa sem avisos?
[Codigo esta formatado consistentemente?

[Verbos aprovados sdo usados?

0 COMPATIBILIDADE
[Versdo minima do PowerShell esta especificada?
1 Mddulos requeridos estao listados?
1 Funciona em diferentes SO (se aplicavel)?

#>

Executar PSScriptAnalyzer

Invoke-ScriptAnalyzer -Path "\MeuScript.ps1" -Severity Warning, Error

Executar testes Pester

Invoke-Pester -Path "\Tests" -Output Detailed

Verificar formatacao
Use extensdo PowerShell do VS Code com formatagao automatica

6.2.6 README Template

Nome do Projeto
Breve descricdo do projeto em uma ou duas frases.
Badges
indice
e Sobre
e Requisitos
e Instalacao
e Uso
e Exemplos
e Documentacéio

e Contribuindo

e Licencga
e Autores
Sobre

Descricao detalhada do projeto:
e Oqueelefaz
e Porque foi criado
e Principais funcionalidades
Requisitos
e PowerShell 5.1 ou superior
e Windows 10/Windows Server 2016 ou superior
e Moddulos necessarios:
o ActiveDirectory
o SqlServer
Instalacao
Instalacdao Manual
Clone o repositorio

git clone https://github.com/usuario/projeto.git

Navegue até o diretorio

cd projeto

Importe o mdédulo

Import-Module .\ModuleName.psd1

Instalacao via PowerShell Gallery

Install-Module -Name ModuleName

Uso

Basico

Exemplo de uso basico

Get-Something -Name "Valor"

Avancado

Exemplo de uso avancado

Get-Something -Name "Valor" -Filter { $_.Property -eq "Filtro" } |
Set-Something -NewValue "NovoValor"

Exemplos

Exemplo 1: Cenario Comum

Descricdo do que este exemplo faz

Get-Something -Parameter1 "Valor1" -Parameter2 "Valor2"

Saida esperada:

Nome Valor Status

#Iltem1 100 Ativo
Exemplo 2: Processamento em Lote
Processar multiplos itens

Get-Content .\lista.txt | ForEach-Object {

Get-Something -Name $_

}

Documentacao

Documentacao completa disponivel em:

Wiki do Projeto

Documentacéao de API

Funcgoes Principais

Get-Something - Obtém recursos
Set-Something - Configura recursos
New-Something - Cria novos recursos

Remove-Something - Remove recursos

Contribuindo

Contribuicdes sdo bem-vindas! Por favor:

1.

Fork o projeto

2. Crie uma branch para sua feature (git checkout -b
feature/NovaFuncionalidade)
3. Commit suas mudancas (git commit -m 'Adiciona nova funcionalidade')
4. Push para a branch (git push origin feature/NovaFuncionalidade)
5. Abra um Pull Request
Guidelines
e Siga o PowerShell Style Guide
e Adicione testes para novas funcionalidades
e Atualize adocumentacao
e Execute PSScriptAnalyzer antes de submeter
Licenca

Este projeto esta licenciado sob a Licenga MIT - veja o arquivo LICENSE para
detalhes.

Autores

Joao Silva - Trabalho Inicial - GitHub

Agradecimentos
e Agradecimento especial aos contribuidores
e Inspiragéao: Projeto X
Changelog
Veja CHANGELOG.md para histdrico de versoes.
Suporte
Para problemas, duvidas ou sugestoes:
e Abraumalssue
e Email: suporte@empresa.com
e Slack: #powershell-help
Conclusao da Secao 6

Nesta secéo, exploramos as melhores praticas e aspectos de segurancga
essenciais para desenvolvimento profissional em PowerShell:

1. Gestao de Credenciais:
o Métodos seguros de armazenamento
o Export-Clixml, SecureString, Credential Manager
o Azure Key Vault para ambientes enterprise
2. Segurangaem Scripts:
o Validacéo e sanitizacao de entrada
o Execution Policy e assinatura digital
o Logging e auditoria
o PowerShell Remoting seguro
o Just Enough Administration (JEA)
3. Padronizacao:
o Convencdes de nomenclatura
o Estrutura de scripts e moédulos
o Versionamento seméntico

4. Documentacgao:

o Comment-based help completo
o Comentarios inline efetivos

o README profissional

o Code review checklist

Com essas praticas, vocé pode criar scripts PowerShell seguros, profissionais,
manuteniveis e bem documentados que atendam aos mais altos padrbes da
industria.

