
PowerShell Essencial para Profissionais de TI

Autor: Paulo César Marino

1. INTRODUÇÃO AO POWERSHELL

1.1 História, Evolução e Posicionamento no Ecossistema Microsoft

1.1.1 Contexto Histórico e Necessidade de Criação

O PowerShell nasceu de uma necessidade crítica da Microsoft em oferecer uma
ferramenta robusta de automação e administração para seus sistemas
operacionais. Antes de sua criação, os administradores de sistemas Windows
dependiam principalmente de:

 Prompt de Comando (CMD): Interface de linha de comando limitada,
herdada do MS-DOS

 Scripts VBScript e JScript: Soluções fragmentadas e sem consistência

 Ferramentas GUI: Interfaces gráficas que não permitiam automação
eficiente

 Windows Management Instrumentation (WMI): Poderoso, mas complexo
e difícil de usar

Enquanto sistemas Unix/Linux possuíam shells poderosos como Bash, Ksh e Zsh
há décadas, o Windows carecia de uma solução unificada e moderna para
administração via linha de comando.

1.1.2 Linha do Tempo do PowerShell

2002-2003: Projeto Monad

 Iniciativa liderada por JeƯrey Snover, arquiteto da Microsoft

 Objetivo: criar um shell orientado a objetos para Windows

 Nome de código: "Monad"

 Conceito revolucionário: trabalhar com objetos .NET ao invés de texto puro

Novembro de 2006: PowerShell 1.0

 Lançamento oficial como componente opcional do Windows

 Baseado no .NET Framework 2.0

 Aproximadamente 130 cmdlets nativos

 Limitações: sem suporte para remoting nativo, módulos limitados

Outubro de 2009: PowerShell 2.0

 Integrado ao Windows 7 e Windows Server 2008 R2

 Recursos revolucionários:

o PowerShell Remoting: Administração remota via WS-Management

o Background Jobs: Execução assíncrona de comandos

o Advanced Functions: Funções com capacidades de cmdlets

o PowerShell ISE: Ambiente de script integrado

o Módulos: Sistema de empacotamento e distribuição de código

Agosto de 2012: PowerShell 3.0

 Lançado com Windows 8 e Windows Server 2012

 Melhorias significativas:

o Workflow: Integração com Windows Workflow Foundation

o CIM Cmdlets: Sucessores dos cmdlets WMI

o Sessões desconectadas: Resiliência em conexões remotas

o Descoberta automática de módulos

o Intellisense aprimorado

Outubro de 2013: PowerShell 4.0

 Incluído no Windows 8.1 e Windows Server 2012 R2

 Recursos principais:

o Desired State Configuration (DSC): Gerenciamento declarativo de
configurações

o Melhorias no debugging: Depuração de scripts e workflows

o Cmdlets para gerenciamento de rede aprimorados

Fevereiro de 2016: PowerShell 5.0

 Última versão do "Windows PowerShell"

 Recursos marcantes:

o PowerShellGet: Gerenciador de pacotes para módulos

o Classes: Suporte nativo para programação orientada a objetos

o Enumerações e validações avançadas

o OneGet/PackageManagement: Framework unificado de
gerenciamento de pacotes

o Melhorias significativas no DSC

Janeiro de 2018: PowerShell Core 6.0

 Mudança de paradigma: Migração para .NET Core

 Multiplataforma: Suporte oficial para Linux e macOS

 Open Source: Código aberto no GitHub

 Renomeação: "Windows PowerShell" (5.1) vs "PowerShell Core" (6.x+)

 Objetivo: unificar a experiência de automação em todos os sistemas
operacionais

Setembro de 2018: PowerShell Core 6.1

 Melhorias de performance e compatibilidade

 Suporte aprimorado para módulos do Windows PowerShell

Janeiro de 2019: PowerShell Core 6.2

 Última versão da série 6.x

 Foco em estabilidade e compatibilidade

Março de 2020: PowerShell 7.0

 Remoção do termo "Core" do nome

 Baseado em .NET Core 3.1

 ForEach-Object -Parallel: Processamento paralelo nativo

 Operadores ternários: Sintaxe condicional simplificada

 Pipeline chain operators (&&, ||)

 Null coalescing operators (??, ??=)

 Compatibilidade aprimorada com Windows PowerShell 5.1

Novembro de 2020: PowerShell 7.1 (LTS)

 Primeira versão Long-Term Support (LTS) do PowerShell 7

 Baseado em .NET 5.0

 Suporte estendido por 3 anos

Novembro de 2021: PowerShell 7.2 (LTS)

 Baseado em .NET 6.0

 Melhorias de performance significativas

 Previsão de suporte até 2024

Novembro de 2022: PowerShell 7.3

 Baseado em .NET 7.0

 Melhorias na experiência do usuário e performance

 Recursos experimentais aprimorados

Novembro de 2023: PowerShell 7.4 (LTS)

 Baseado em .NET 8.0

 Melhorias na segurança e conformidade

 Integração aprimorada com Azure e serviços em nuvem

2024-2025: PowerShell 7.5 (Preview/Atual)

 Evolução contínua com feedback da comunidade

 Foco em performance, segurança e integração com DevOps

1.1.3 Posicionamento no Ecossistema Microsoft

O PowerShell ocupa uma posição estratégica e central no ecossistema Microsoft
moderno:

1. Administração de Sistemas Operacionais

 Windows Server: Única interface consistente para gerenciar todos os
recursos

 Windows 10/11: Ferramentas avançadas de administração local

 Server Core e Nano Server: Instalações sem GUI dependem
exclusivamente do PowerShell

2. Integração com Produtos Microsoft

 Active Directory: Módulo ActiveDirectory com centenas de cmdlets

 Exchange Server: Toda a administração do Exchange é baseada em
PowerShell

 SharePoint: Automação e gerenciamento de farms SharePoint

 SQL Server: Módulo SQLPS/SqlServer para administração de bancos de
dados

 System Center: Configuration Manager, Operations Manager, Orchestrator

 Hyper-V: Gerenciamento completo de virtualização

 Azure: Módulos Az para gerenciar recursos na nuvem

 Microsoft 365: Módulos para Exchange Online, SharePoint Online, Teams,
etc.

3. DevOps e Automação

 Azure DevOps: Tarefas nativas de PowerShell em pipelines

 GitHub Actions: Suporte para execução de scripts PowerShell

 Infrastructure as Code (IaC): Scripts de provisionamento e configuração

 Desired State Configuration (DSC): Gerenciamento declarativo de
infraestrutura

4. Segurança e Conformidade

 Microsoft Defender: Cmdlets para gerenciamento de segurança

 Antimalware Scan Interface (AMSI): Integração nativa

 JEA (Just Enough Administration): Delegação segura de privilégios
administrativos

 Logging e auditoria: Transcripts, module logging, script block logging

5. Desenvolvimento e Testes

 Pester: Framework oficial de testes para PowerShell

 PSScriptAnalyzer: Análise estática de código

 Platyps: Geração de documentação

1.1.4 Windows PowerShell vs PowerShell 7+

É fundamental compreender as diferenças entre as duas versões:

Aspecto Windows PowerShell 5.1 PowerShell 7+

Base tecnológica .NET Framework 4.x .NET Core / .NET 6+

Plataformas Apenas Windows Windows, Linux, macOS

Aspecto Windows PowerShell 5.1 PowerShell 7+

Ciclo de vida
Manutenção (sem novos
recursos)

Desenvolvimento ativo

Instalação no
Windows

Nativo (não removível) Instalação lado a lado

Compatibilidade 100% com módulos legados ~90% compatibilidade

Performance Boa
Excelente (especialmente
I/O)

Módulos exclusivos
Alguns módulos Windows
legados

Novos recursos modernos

Quando usar Windows PowerShell 5.1:

 Scripts legados que dependem de módulos incompatíveis

 Ambiente exclusivamente Windows sem necessidade de novos recursos

 Dependências de .NET Framework específicas

Quando usar PowerShell 7+:

 Novos projetos e scripts

 Ambientes multiplataforma

 Necessidade de performance superior

 Uso de recursos modernos da linguagem

 Ambientes em nuvem e containers

1.1.5 Princípios de Design e Filosofia

O PowerShell foi projetado seguindo princípios fundamentais:

1. Orientação a Objetos

 Diferente de shells Unix que trabalham com texto, PowerShell manipula
objetos .NET

 Acesso direto a propriedades e métodos

 Eliminação de parsing de texto

2. Consistência

 Convenção de nomenclatura Verbo-Substantivo (Get-Process, Set-
Location)

 Parâmetros padronizados em todos os cmdlets

 Comportamento previsível

3. Descoberta

 Sistema de ajuda integrado (Get-Help)

 Autocompletar inteligente (Tab completion)

 Get-Command para descobrir cmdlets

4. Composição

 Pipeline poderoso para encadear comandos

 Cmdlets especializados que fazem uma coisa bem feita

 Filosofia Unix aplicada a objetos

5. Expansibilidade

 Fácil criação de funções e módulos

 Integração com .NET

 Suporte a providers para acessar datastores como filesystem

1.2 Instalação e Configuração do Ambiente

1.2.1 Verificando Versões Instaladas

Antes de instalar ou atualizar o PowerShell, é importante verificar as versões já
presentes no sistema.

Verificar versão do Windows PowerShell:

$PSVersionTable

Este comando retorna um objeto hashtable com informações detalhadas:

Name Value

---- -----

PSVersion 5.1.19041.4522

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}

BuildVersion 10.0.19041.4522

CLRVersion 4.0.30319.42000

WSManStackVersion 3.0

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

Principais propriedades:

 PSVersion: Versão do PowerShell instalada

 PSEdition: "Desktop" (Windows PowerShell) ou "Core" (PowerShell 7+)

 CLRVersion: Versão do Common Language Runtime (.NET)

 PSCompatibleVersions: Versões com as quais é compatível

Verificar se PowerShell 7+ está instalado:

Verificar via executável

pwsh -v

Ou dentro de uma sessão PowerShell 7

$PSVersionTable.PSVersion

1.2.2 Instalando PowerShell 7+ no Windows

Existem várias formas de instalar o PowerShell 7+ no Windows:

Método 1: Via MSI (Instalador tradicional)

1. Acesse o repositório oficial: https://github.com/PowerShell/PowerShell

2. Navegue até a seção "Releases"

3. Baixe o instalador MSI apropriado:

o PowerShell-7.x.x-win-x64.msi (64 bits)

o PowerShell-7.x.x-win-x86.msi (32 bits)

4. Execute o instalador e siga o assistente

Opções de instalação:

 Adicionar ao PATH do sistema

 Registrar contexto de menu do Windows Explorer

 Habilitar PowerShell Remoting (requer confirmação)

Método 2: Via Windows Package Manager (winget)

Instalar versão estável mais recente

winget install Microsoft.PowerShell

Instalar versão Preview

winget install Microsoft.PowerShell.Preview

Atualizar PowerShell existente

winget upgrade Microsoft.PowerShell

Método 3: Via Microsoft Store

1. Abra a Microsoft Store

2. Pesquise por "PowerShell"

3. Clique em "Obter" ou "Instalar"

4. Atualizações automáticas são gerenciadas pela Store

Método 4: Via Chocolatey

Instalar Chocolatey primeiro (se não tiver)

Set-ExecutionPolicy Bypass -Scope Process -Force

[System.Net.ServicePointManager]::SecurityProtocol =
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072

iex ((New-Object
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Instalar PowerShell

choco install powershell-core

Método 5: Via Script de Instalação Automatizada

Executar como Administrador

iex "& { $(irm https://aka.ms/install-powershell.ps1) } -UseMSI"

Ou com opções específicas

iex "& { $(irm https://aka.ms/install-powershell.ps1) } -UseMSI -Preview -Quiet"

1.2.3 Instalando PowerShell 7+ no Linux

Ubuntu/Debian:

Atualizar índice de pacotes

sudo apt-get update

Instalar dependências

sudo apt-get install -y wget apt-transport-https software-properties-common

Baixar a chave GPG da Microsoft

wget -q "https://packages.microsoft.com/config/ubuntu/$(lsb_release -
rs)/packages-microsoft-prod.deb"

Registrar o repositório da Microsoft

sudo dpkg -i packages-microsoft-prod.deb

Atualizar lista de pacotes

sudo apt-get update

Instalar PowerShell

sudo apt-get install -y powershell

Iniciar PowerShell

pwsh

Red Hat Enterprise Linux / CentOS:

Registrar repositório da Microsoft

curl https://packages.microsoft.com/config/rhel/8/prod.repo | sudo tee
/etc/yum.repos.d/microsoft.repo

Instalar PowerShell

sudo yum install -y powershell

Iniciar PowerShell

pwsh

Fedora:

Importar chave GPG

sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc

Registrar repositório

curl https://packages.microsoft.com/config/rhel/8/prod.repo | sudo tee
/etc/yum.repos.d/microsoft.repo

Instalar PowerShell

sudo dnf install -y powershell

Iniciar PowerShell

pwsh

1.2.4 Instalando PowerShell 7+ no macOS

Via Homebrew (recomendado):

Instalar Homebrew (se não tiver)

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Instalar PowerShell

brew install --cask powershell

Iniciar PowerShell

pwsh

Via Download Direto:

1. Baixe o pacote PKG de: https://github.com/PowerShell/PowerShell/releases

2. Execute o instalador powershell-7.x.x-osx-x64.pkg

3. Siga o assistente de instalação

1.2.5 Configuração de Execution Policy

O Execution Policy é um mecanismo de segurança que controla a execução de
scripts no PowerShell.

Níveis de Execution Policy:

1. Restricted (Padrão no Windows cliente)

o Não permite execução de nenhum script

o Apenas comandos interativos

2. AllSigned

o Apenas scripts assinados por um publisher confiável

o Requer certificado digital

3. RemoteSigned (Recomendado para desenvolvimento)

o Scripts locais executam sem assinatura

o Scripts baixados da internet requerem assinatura

4. Unrestricted

o Executa todos os scripts

o Avisa sobre scripts da internet

5. Bypass

o Nenhuma verificação ou aviso

o Usado em scripts de automação

6. Undefined

o Remove a policy do escopo atual

o Herda do escopo superior

Escopos de Execution Policy:

MachinePolicy: Definido por Group Policy (domínio)

UserPolicy: Definido por Group Policy (usuário)

Process: Apenas para a sessão atual

CurrentUser: Para o usuário atual

LocalMachine: Para todos os usuários da máquina

Comandos para gerenciar Execution Policy:

Verificar policy atual

Get-ExecutionPolicy

Verificar todas as policies por escopo

Get-ExecutionPolicy -List

Definir policy para usuário atual (recomendado)

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

Definir policy para máquina (requer admin)

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope LocalMachine

Definir apenas para sessão atual (não persiste)

Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process

Forçar mudança sem confirmação

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Force

Exemplo prático:

Situação: você baixou um script da internet

O arquivo está bloqueado (Zone.Identifier)

Verificar se arquivo está bloqueado

Get-Item .\MeuScript.ps1 -Stream Zone.Identifier

Desbloquear arquivo específico

Unblock-File -Path .\MeuScript.ps1

Desbloquear todos os scripts de uma pasta

Get-ChildItem -Path C:\Scripts -Recurse | Unblock-File

1.2.6 Configurando o Profile do PowerShell

O profile é um script executado automaticamente ao iniciar o PowerShell,
permitindo personalização do ambiente.

Tipos de Profile:

Existem 4 profiles, carregados nesta ordem:

1. AllUsersAllHosts: Para todos os usuários, todas as aplicações

o Caminho: $PSHOME\Profile.ps1

2. AllUsersCurrentHost: Para todos os usuários, aplicação atual

o Caminho: $PSHOME\Microsoft.PowerShell_profile.ps1

3. CurrentUserAllHosts: Usuário atual, todas as aplicações

o Caminho: $Home\Documents\PowerShell\Profile.ps1

4. CurrentUserCurrentHost: Usuário atual, aplicação atual (mais comum)

o Caminho: $Home\Documents\PowerShell\Microsoft.PowerShell_pr
ofile.ps1

Verificando caminhos dos profiles:

Ver todos os profiles disponíveis

$PROFILE | Get-Member -Type NoteProperty | Select-Object Name,
@{Name='Path'; Expression={$PROFILE.$($_.Name)}}

Ver caminho do profile atual

$PROFILE

Verificar se profile existe

Test-Path $PROFILE

Criando um profile:

Criar diretório se não existir

if (!(Test-Path (Split-Path $PROFILE))) {

 New-Item -Path (Split-Path $PROFILE) -ItemType Directory -Force

}

Criar arquivo de profile

New-Item -Path $PROFILE -ItemType File -Force

Abrir no editor padrão

notepad $PROFILE

Ou no VS Code

code $PROFILE

Exemplo de Profile Básico:

Profile para PowerShell 7

Localização: $Home\Documents\PowerShell\Microsoft.PowerShell_profile.ps1

Mensagem de boas-vindas

Write-Host "Bem-vindo, $env:USERNAME!" -ForegroundColor Green

Write-Host "PowerShell $($PSVersionTable.PSVersion)" -ForegroundColor Cyan

Aliases personalizados

Set-Alias -Name np -Value notepad.exe

Set-Alias -Name ll -Value Get-ChildItem

Funções personalizadas

function prompt {

 $location = Get-Location

 Write-Host "PS " -NoNewline -ForegroundColor Yellow

 Write-Host "$location" -NoNewline -ForegroundColor Cyan

 Write-Host ">" -NoNewline -ForegroundColor Yellow

 return " "

}

function Get-MyIP {

 (Invoke-WebRequest -Uri 'https://api.ipify.org').Content

}

Importar módulos frequentemente usados

Import-Module -Name PSReadLine

Configurações do PSReadLine

Set-PSReadLineOption -PredictionSource History

Set-PSReadLineOption -PredictionViewStyle ListView

Set-PSReadLineOption -EditMode Windows

Set-PSReadLineKeyHandler -Key Tab -Function MenuComplete

Variáveis de ambiente personalizadas

$env:SCRIPTS_PATH = "C:\Scripts"

Navegação rápida

function GoScripts { Set-Location $env:SCRIPTS_PATH }

Set-Alias -Name scripts -Value GoScripts

Histórico aumentado

$MaximumHistoryCount = 10000

1.2.7 Instalando e Configurando Ferramentas Complementares

Visual Studio Code com PowerShell Extension

Visual Studio Code é o editor recomendado para desenvolvimento em PowerShell.

Instalar VS Code via winget

winget install Microsoft.VisualStudioCode

Instalar extensão PowerShell

code --install-extension ms-vscode.powershell

Configurações recomendadas para VS Code (settings.json):

{

 "powershell.codeFormatting.preset": "OTBS",

 "powershell.codeFormatting.autoCorrectAliases": true,

 "powershell.codeFormatting.useCorrectCasing": true,

 "powershell.integratedConsole.focusConsoleOnExecute": false,

 "powershell.scriptAnalysis.enable": true,

 "editor.formatOnSave": true,

 "files.trimTrailingWhitespace": true

}

Windows Terminal

Windows Terminal oferece uma experiência moderna de linha de comando:

Instalar via winget

winget install Microsoft.WindowsTerminal

Ou via Microsoft Store

Pesquisar: "Windows Terminal"

Configuração de perfil padrão (settings.json):

{

 "defaultProfile": "{574e775e-4f2a-5b96-ac1e-a2962a402336}",

 "profiles": {

 "defaults": {

 "fontFace": "Cascadia Code",

 "fontSize": 11,

 "colorScheme": "Campbell Powershell"

 },

 "list": [

 {

 "guid": "{574e775e-4f2a-5b96-ac1e-a2962a402336}",

 "name": "PowerShell 7",

 "source": "Windows.Terminal.PowershellCore",

 "icon": "ms-appx:///ProfileIcons/{574e775e-4f2a-5b96-ac1e-
a2962a402336}.png",

 "startingDirectory": "%USERPROFILE%"

 }

]

 }

}

Oh My Posh (Temas e personalização do prompt)

Instalar Oh My Posh

winget install JanDeDobbeleer.OhMyPosh

Instalar fontes Nerd Fonts

oh-my-posh font install

Adicionar ao profile

oh-my-posh init pwsh | Invoke-Expression

Ou com tema específico

oh-my-posh init pwsh --config "$env:POSH_THEMES_PATH/paradox.omp.json" |
Invoke-Expression

PSReadLine (Melhorias na linha de comando)

PSReadLine já vem instalado no PowerShell 7, mas pode ser atualizado:

Atualizar PSReadLine

Install-Module -Name PSReadLine -Force -AllowClobber

Configurações recomendadas (adicionar ao profile)

Set-PSReadLineOption -PredictionSource History

Set-PSReadLineOption -PredictionViewStyle ListView

Set-PSReadLineOption -HistorySearchCursorMovesToEnd

Set-PSReadLineKeyHandler -Key UpArrow -Function HistorySearchBackward

Set-PSReadLineKeyHandler -Key DownArrow -Function HistorySearchForward

1.2.8 Configurando PowerShell Remoting

PowerShell Remoting permite executar comandos em computadores remotos.

Habilitar Remoting (no computador de destino):

Executar como Administrador

Enable-PSRemoting -Force

Verificar configuração

Get-PSSessionConfiguration

Testar conectividade local

Test-WSMan

Configurações de firewall (automáticas com Enable-PSRemoting):

 Porta 5985 (HTTP - WinRM)

 Porta 5986 (HTTPS - WinRM-HTTPS)

Configurar clientes confiáveis (se não estiver em domínio):

No computador cliente, executar como Administrador

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "192.168.1.100,Server01"
-Force

Ou permitir todos (não recomendado em produção)

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "*" -Force

Verificar configuração

Get-Item WSMan:\localhost\Client\TrustedHosts

Testar conexão remota:

Teste básico

Test-NetConnection -ComputerName Server01 -Port 5985

Teste de sessão remota

Enter-PSSession -ComputerName Server01 -Credential (Get-Credential)

1.2.9 Módulos Essenciais para Instalar

PowerShellGet (gerenciador de módulos):

Verificar versão

Get-Module -Name PowerShellGet -ListAvailable

Atualizar para versão mais recente

Install-Module -Name PowerShellGet -Force -AllowClobber

Registrar PSGallery como repositório confiável

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

Módulos recomendados:

Pester - Framework de testes

Install-Module -Name Pester -Force

PSScriptAnalyzer - Análise estática de código

Install-Module -Name PSScriptAnalyzer -Force

ImportExcel - Manipulação de arquivos Excel sem Microsoft OƯice

Install-Module -Name ImportExcel -Force

Az - Gerenciamento do Azure

Install-Module -Name Az -AllowClobber -Force

Microsoft.Graph - Gerenciamento do Microsoft 365

Install-Module -Name Microsoft.Graph -Force

SqlServer - Administração do SQL Server

Install-Module -Name SqlServer -Force

Verificar módulos instalados:

Listar todos os módulos disponíveis

Get-Module -ListAvailable

Buscar módulos na galeria

Find-Module -Name *Azure*

Ver informações de um módulo

Get-Module -Name Az -ListAvailable | Select-Object Name, Version, Description

1.2.10 Verificação Final da Instalação

Execute este script completo para validar sua instalação:

Script de Verificação do Ambiente PowerShell

Write-Host "`n=== VERIFICAÇÃO DO AMBIENTE POWERSHELL ===" -
ForegroundColor Cyan

Versão do PowerShell

Write-Host "`n[1] Versão do PowerShell:" -ForegroundColor Yellow

$PSVersionTable | Format-Table -AutoSize

Execution Policy

Write-Host "`n[2] Execution Policy:" -ForegroundColor Yellow

Get-ExecutionPolicy -List | Format-Table -AutoSize

Profile

Write-Host "`n[3] Profile do PowerShell:" -ForegroundColor Yellow

Write-Host "Caminho: $PROFILE"

Write-Host "Existe: $(Test-Path $PROFILE)"

Módulos Importantes

Write-Host "`n[4] Módulos Essenciais:" -ForegroundColor Yellow

$modulos = @('PowerShellGet', 'PSReadLine', 'Pester', 'PSScriptAnalyzer')

foreach ($mod in $modulos) {

 $versao = (Get-Module -Name $mod -ListAvailable | Select-Object -First
1).Version

 if ($versao) {

 Write-Host "$mod : $versao" -ForegroundColor Green

 } else {

 Write-Host "$mod : NÃO INSTALADO" -ForegroundColor Red

 }

}

PowerShell Remoting

Write-Host "`n[5] PowerShell Remoting:" -ForegroundColor Yellow

try {

 Test-WSMan -ErrorAction Stop | Out-Null

 Write-Host "Status: HABILITADO" -ForegroundColor Green

} catch {

 Write-Host "Status: DESABILITADO" -ForegroundColor Red

}

Repositórios

Write-Host "`n[6] Repositórios Configurados:" -ForegroundColor Yellow

Get-PSRepository | Format-Table -AutoSize

Write-Host "`n=== VERIFICAÇÃO CONCLUÍDA ===" -ForegroundColor Cyan

Conclusão da Seção 1

Nesta primeira seção, exploramos em profundidade a história e evolução do
PowerShell, desde sua concepção como Projeto Monad até as versões modernas

multiplataforma. Compreendemos seu posicionamento estratégico no
ecossistema Microsoft e as diferenças fundamentais entre Windows PowerShell
5.1 e PowerShell 7+.

Também realizamos uma configuração completa do ambiente, incluindo
instalação em diferentes sistemas operacionais, configuração de execution
policies, criação de profiles personalizados e instalação de ferramentas
complementares essenciais.

Com este ambiente preparado, você está pronto para começar a explorar os
recursos e capacidades do PowerShell de forma prática e eficiente.

2. COMANDOS E SINTAXE BÁSICA

2.1 Cmdlets, Parâmetros e Pipeline

2.1.1 Conceito e Estrutura de Cmdlets

O que é um Cmdlet?

Um cmdlet (pronuncia-se "command-let") é a unidade fundamental de comando
no PowerShell. Diferente de comandos tradicionais que são programas
executáveis, cmdlets são classes .NET especializadas compiladas em assemblies
que são carregados pelo PowerShell.

Características fundamentais dos cmdlets:

 São comandos nativos do PowerShell escritos em C# ou PowerShell

 Seguem um padrão consistente de nomenclatura

 Trabalham com objetos .NET, não apenas texto

 Suportam parâmetros padronizados

 Integram-se perfeitamente ao pipeline

 Possuem sistema de ajuda incorporado

Convenção de Nomenclatura: Verbo-Substantivo

Todos os cmdlets seguem a convenção Verbo-Substantivo (Verb-Noun),
tornando-os intuitivos e fáceis de lembrar.

Estrutura:

Verbo-Substantivo

│ │

│ └─── O que está sendo manipulado (objeto)

└────────── Ação que está sendo executada

Exemplos práticos:

Get-Process # Obtém processos em execução

Stop-Service # Para um serviço

New-Item # Cria um novo item (arquivo, pasta, etc.)

Set-Location # Define a localização atual

Remove-Item # Remove um item

Test-Connection # Testa conectividade de rede

Verbos Aprovados

O PowerShell possui uma lista de verbos aprovados para garantir consistência. Os
verbos são agrupados por categoria:

Verbos Comuns (Common):

Get-Verb | Where-Object Group -eq 'Common'

Verbo Significado Exemplo

Get Obtém um recurso Get-Service

Set Define ou modifica um recurso Set-ExecutionPolicy

New Cria um novo recurso New-Item

Remove Exclui um recurso Remove-Item

Add Adiciona a uma coleção Add-Content

Clear Remove conteúdo mas mantém o objeto Clear-Content

Copy Copia um recurso Copy-Item

Move Move um recurso Move-Item

Rename Renomeia um recurso Rename-Item

Verbos de Dados (Data):

Verbo Significado Exemplo

Import Importa dados Import-Csv

Export Exporta dados Export-Clixml

ConvertTo Converte para formato ConvertTo-Json

ConvertFrom Converte de formato ConvertFrom-Json

Compare Compara objetos Compare-Object

Select Seleciona propriedades Select-Object

Verbos de Comunicação (Communications):

Verbo Significado Exemplo

Connect Estabelece conexão Connect-PSSession

Disconnect Encerra conexão Disconnect-PSSession

Read Lê dados Read-Host

Write Escreve dados Write-Output

Send Envia dados Send-MailMessage

Receive Recebe dados Receive-Job

Verbos de Ciclo de Vida (Lifecycle):

Verbo Significado Exemplo

Start Inicia um recurso Start-Service

Stop Para um recurso Stop-Process

Verbo Significado Exemplo

Restart Reinicia um recurso Restart-Computer

Suspend Pausa um recurso Suspend-Service

Resume Retoma um recurso Resume-Service

Listar todos os verbos aprovados:

Ver todos os verbos

Get-Verb | Format-Table -AutoSize

Contar verbos por grupo

Get-Verb | Group-Object Group | Sort-Object Count -Descending

Buscar verbos específicos

Get-Verb -Verb *move*

Anatomia de um Cmdlet

Vamos analisar a estrutura completa de um cmdlet:

Get-ChildItem -Path C:\Users -Filter *.txt -Recurse -Force

│ │ │ │ │

│ │ │ │ └─ Parâmetro switch

│ │ │ └───────── Parâmetro switch

│ │ └────────────────────────── Parâmetro nomeado

│ └── Parâmetro nomeado

└─── Cmdlet

Componentes:

1. Cmdlet: O comando principal (Get-ChildItem)

2. Parâmetros nomeados: Aceitam valores (-Path C:\Users)

3. Parâmetros switch: Booleanos, ativados pela presença (-Recurse)

4. Valores: Dados passados aos parâmetros (C:\Users, *.txt)

2.1.2 Parâmetros

Tipos de Parâmetros

1. Parâmetros Posicionais

Podem ser especificados sem o nome, baseados na posição:

Com nome do parâmetro

Get-ChildItem -Path C:\Windows

Sem nome (posicional) - funciona se Path for o primeiro parâmetro

Get-ChildItem C:\Windows

Múltiplos parâmetros posicionais

Copy-Item C:\origem.txt C:\destino.txt

Equivalente a:

Copy-Item -Path C:\origem.txt -Destination C:\destino.txt

2. Parâmetros Nomeados

Especificados explicitamente com o nome:

Get-Service -Name wuauserv

Get-Process -Name notepad

Get-Content -Path arquivo.txt -Encoding UTF8

Vantagens dos parâmetros nomeados:

 Clareza e legibilidade

 Não dependem de ordem

 Autocompletar funciona melhor

 Recomendados em scripts de produção

3. Parâmetros Switch

Parâmetros booleanos que não requerem valor:

Ativar o switch

Get-ChildItem -Recurse

Get-Process -IncludeUserName

Desativar explicitamente (raro)

Get-ChildItem -Recurse:$false

Atribuir a variável

$recursivo = $true

Get-ChildItem -Recurse:$recursivo

4. Parâmetros Obrigatórios vs Opcionais

Obrigatório - cmdlet solicita se não for fornecido

New-Item -ItemType File

PowerShell perguntará: Path?

Opcional - tem valor padrão

Get-ChildItem

Usa o diretório atual como padrão

Parâmetros Comuns (Common Parameters)

Todos os cmdlets avançados suportam parâmetros comuns automaticamente:

-Verbose: Mostra mensagens detalhadas

Get-Process -Verbose

-Debug: Mostra mensagens de depuração

Get-Service -Debug

-ErrorAction: Controla comportamento de erros

Get-Item "C:\naoexiste.txt" -ErrorAction SilentlyContinue

-ErrorVariable: Armazena erros em variável

Get-Service -Name "ServicoInexistente" -ErrorVariable meuErro

$meuErro

-WarningAction: Controla exibição de avisos

Get-Process -WarningAction Ignore

-InformationAction: Controla mensagens informativas

Write-Information "Processando..." -InformationAction Continue

-OutVariable: Captura saída em variável

Get-Process -Name notepad -OutVariable processos

$processos

-WhatIf: Simula execução sem executar (dry-run)

Remove-Item C:\teste.txt -WhatIf

-Confirm: Solicita confirmação

Stop-Service wuauserv -Confirm

ErrorAction - Valores possíveis:

Continue (padrão): Exibe erro e continua

Get-Item "C:\naoexiste.txt" -ErrorAction Continue

SilentlyContinue: Suprime erro e continua

Get-Item "C:\naoexiste.txt" -ErrorAction SilentlyContinue

Stop: Trata como erro terminante

Get-Item "C:\naoexiste.txt" -ErrorAction Stop

Inquire: Pergunta ao usuário o que fazer

Get-Item "C:\naoexiste.txt" -ErrorAction Inquire

Ignore: Ignora completamente (não adiciona ao $Error)

Get-Item "C:\naoexiste.txt" -ErrorAction Ignore

Descobrindo Parâmetros

Usando Get-Command:

Ver sintaxe básica

Get-Command Get-Process

Ver todos os conjuntos de parâmetros

Get-Command Get-Process -Syntax

Detalhes completos

Get-Command Get-Process | Format-List *

Usando Get-Help:

Ajuda completa

Get-Help Get-Process -Full

Apenas parâmetros

Get-Help Get-Process -Parameter *

Parâmetro específico

Get-Help Get-Process -Parameter Name

Exemplos práticos

Get-Help Get-Process -Examples

Usando IntelliSense e Tab Completion:

Digite o cmdlet e pressione espaço, depois Ctrl+Espaço

Get-Process <Ctrl+Espaço>

Ou use Tab para percorrer parâmetros

Get-Process -<Tab>

Tab completion também funciona com valores

Get-Service -Name w<Tab>

Abreviação de Parâmetros

O PowerShell permite abreviar nomes de parâmetros, desde que a abreviação seja
única:

Completo

Get-Process -Name notepad

Abreviado

Get-Process -N notepad

Também funciona

Get-Process -Na notepad

Erro: ambíguo (pode ser Name ou Path)

Get-ChildItem -P #  Erro

 Aviso importante: Embora abreviações funcionem, NÃO as use em scripts
de produção. Use sempre nomes completos para clareza e manutenibilidade.

Passando Múltiplos Valores

Muitos parâmetros aceitam arrays:

Array explícito

Get-Process -Name notepad, chrome, explorer

Array criado com operador de vírgula

$processos = "notepad", "chrome"

Get-Process -Name $processos

Pipeline

"notepad", "chrome", "explorer" | Get-Process

Range (apenas para tipos apropriados)

1..10 | Get-Random -Count 3

2.1.3 Pipeline - O Coração do PowerShell

Conceito e Funcionamento

O pipeline (representado pelo símbolo |) é um dos recursos mais poderosos do
PowerShell. Ele permite encadear comandos, passando a saída de um como
entrada do próximo.

Diferença fundamental em relação a shells Unix:

Unix/Linux (passa TEXTO)

ls -l | grep ".txt"

PowerShell (passa OBJETOS)

Get-ChildItem | Where-Object Extension -eq ".txt"

Fluxo de dados no pipeline:

Cmdlet 1 → Objeto → Cmdlet 2 → Objeto → Cmdlet 3 → Resultado

Pipeline Básico

Obter processos e filtrar

Get-Process | Where-Object CPU -gt 100

Obter serviços, filtrar e ordenar

Get-Service | Where-Object Status -eq 'Running' | Sort-Object Name

Obter arquivos, selecionar propriedades

Get-ChildItem | Select-Object Name, Length, LastWriteTime

Cadeia longa

Get-Process |

 Where-Object WorkingSet -gt 100MB |

 Sort-Object WorkingSet -Descending |

 Select-Object -First 10 |

 Format-Table Name, Id, @{Name='RAM(MB)';Expression={$_.WorkingSet / 1MB}}
-AutoSize

Vinculação de Pipeline (Pipeline Binding)

O PowerShell usa dois métodos para vincular objetos no pipeline aos parâmetros:

1. ByValue (Por Valor)

O objeto inteiro é passado e o cmdlet procura um parâmetro que aceite esse tipo:

String é passada para o parâmetro -Name

"wuauserv", "spooler" | Get-Service

Como descobrir o que aceita ByValue

Get-Help Get-Service -Parameter Name

Verá: Accept pipeline input: True (ByValue, ByPropertyName)

2. ByPropertyName (Por Nome de Propriedade)

Propriedades do objeto são mapeadas para parâmetros com o mesmo nome:

Objeto tem propriedade 'Name', mapeada para -Name

Get-Service wuauserv | Stop-Service

Verificar mapeamento

Get-Service wuauserv | Get-Member -MemberType Properties

Verá a propriedade Name

Get-Help Stop-Service -Parameter Name

Verá: Accept pipeline input: True (ByPropertyName, ByValue)

Exemplo complexo de ByPropertyName:

Criar objetos customizados

$computadores = @(

 [PSCustomObject]@{ComputerName = 'Server01'; Path = 'C:\Logs'}

 [PSCustomObject]@{ComputerName = 'Server02'; Path = 'C:\Logs'}

)

As propriedades são automaticamente mapeadas

$computadores | Get-ChildItem

ComputerName → -ComputerName

Path → -Path

Pipeline Variables (Variáveis Automáticas)

Dentro do pipeline, existem variáveis especiais:

$_ ou $PSItem - representa o objeto atual

Get-Process | Where-Object { $_.CPU -gt 100 }

Acessando propriedades

Get-Service | ForEach-Object { "Serviço: $($_.Name) - Status: $($_.Status)" }

Chamando métodos

Get-Process notepad | ForEach-Object { $_.Kill() }

Cmdlets Essenciais para Pipeline

Where-Object (Filtragem):

Sintaxe simplificada (PS 3.0+)

Get-Process | Where-Object CPU -gt 50

Sintaxe de script block (mais flexível)

Get-Process | Where-Object { $_.CPU -gt 50 -and $_.WorkingSet -gt 100MB }

Múltiplas condições

Get-Service | Where-Object {

 $_.Status -eq 'Running' -and

 $_.StartType -eq 'Automatic'

}

Operadores comuns

Get-ChildItem | Where-Object Name -like "*.txt"

Get-ChildItem | Where-Object Length -ge 1MB

Get-Process | Where-Object ProcessName -match "^chrome"

Select-Object (Seleção e Transformação):

Selecionar propriedades específicas

Get-Process | Select-Object Name, Id, CPU

Primeiros N elementos

Get-Process | Select-Object -First 5

Últimos N elementos

Get-Process | Select-Object -Last 5

Pular elementos

Get-Process | Select-Object -Skip 10 -First 5

Propriedades únicas

Get-Process | Select-Object ProcessName -Unique

Propriedades calculadas

Get-Process | Select-Object Name,

 @{Name='CPUTime'; Expression={$_.CPU}},

 @{Name='MemoryMB'; Expression={$_.WorkingSet / 1MB}}

Propriedades calculadas com formatação

Get-ChildItem | Select-Object Name,

 @{Name='SizeMB'; Expression={'{0:N2}' -f ($_.Length / 1MB)}}

Sort-Object (Ordenação):

Ordenação ascendente (padrão)

Get-Process | Sort-Object CPU

Ordenação descendente

Get-Process | Sort-Object CPU -Descending

Múltiplas chaves

Get-Process | Sort-Object Company, Name

Com tipos diferentes

Get-ChildItem | Sort-Object LastWriteTime -Descending

Ordenação customizada (caso sensível)

Get-Service | Sort-Object Name -CaseSensitive

ForEach-Object (Iteração):

Sintaxe básica

Get-Process | ForEach-Object { $_.Name }

Múltiplas operações

Get-ChildItem -File | ForEach-Object {

 Write-Host "Processando: $($_.Name)"

 $_.LastWriteTime = Get-Date

}

Com Begin, Process, End

1..10 | ForEach-Object -Begin {

 Write-Host "Iniciando..."

 $soma = 0

} -Process {

 $soma += $_

} -End {

 Write-Host "Soma total: $soma"

}

Processamento paralelo (PS 7.0+)

1..10 | ForEach-Object -Parallel {

 Start-Sleep -Seconds 1

 "Processado: $_"

} -ThrottleLimit 5

Group-Object (Agrupamento):

Agrupar por propriedade

Get-Service | Group-Object Status

Com contagem

Get-Process | Group-Object Company | Sort-Object Count -Descending

Múltiplas propriedades

Get-ChildItem | Group-Object Extension, @{Expression={

 if($_.Length -gt 1MB){'Grande'}else{'Pequeno'}

}}

Acessar grupos

$grupos = Get-Process | Group-Object Company

$grupos | ForEach-Object {

 Write-Host "$($_.Name): $($_.Count) processos"

}

Measure-Object (Cálculos):

Contar objetos

Get-Process | Measure-Object

Soma

Get-ChildItem -File | Measure-Object -Property Length -Sum

Estatísticas completas

Get-Process | Measure-Object -Property CPU -Average -Sum -Maximum -Minimum

Múltiplas propriedades

Get-Process | Measure-Object -Property CPU, WorkingSet -Average

Formatação de Saída

 IMPORTANTE: Cmdlets de formatação (Format-*) devem ser sempre os
últimos no pipeline, pois convertem objetos em formatação, quebrando o
pipeline.

Format-Table:

Básico

Get-Process | Format-Table

Propriedades específicas

Get-Process | Format-Table Name, Id, CPU

AutoSize para ajustar colunas

Get-Process | Format-Table Name, Id, CPU -AutoSize

GroupBy

Get-Service | Format-Table -GroupBy Status

Propriedades calculadas

Get-Process | Format-Table Name,

 @{Label='CPU(s)'; Expression={$_.CPU}; Width=10; Alignment='Right'}

Format-List:

Todas as propriedades

Get-Process -Name powershell | Format-List *

Propriedades específicas

Get-Service wuauserv | Format-List Name, Status, StartType

Útil para objetos complexos

Get-ComputerInfo | Format-List

Format-Wide:

Exibição em colunas

Get-Process | Format-Wide Name

Especificar número de colunas

Get-Process | Format-Wide Name -Column 4

Out-GridView:

Interface gráfica interativa

Get-Process | Out-GridView

Com seleção

Get-Service | Out-GridView -PassThru | Start-Service

Modo de saída

$selecionados = Get-Process | Out-GridView -OutputMode Multiple

Exportação de Dados

Out-File:

Salvar em arquivo texto

Get-Process | Out-File processos.txt

Com encoding específico

Get-Process | Out-File processos.txt -Encoding UTF8

Append

Get-Service | Out-File servicos.txt -Append

Largura de linha

Get-Process | Out-File processos.txt -Width 200

Export-Csv:

Exportar para CSV

Get-Process | Export-Csv processos.csv

Sem informações de tipo

Get-Process | Export-Csv processos.csv -NoTypeInformation

Com delimitador customizado

Get-Process | Export-Csv processos.csv -Delimiter ';'

Encoding

Get-Service | Export-Csv servicos.csv -Encoding UTF8

Export-Clixml:

Serialização completa de objetos

Get-Process | Export-Clixml processos.xml

Importar posteriormente

$processos = Import-Clixml processos.xml

ConvertTo-Json / ConvertTo-Html:

JSON

Get-Process | Select-Object Name, Id, CPU | ConvertTo-Json

JSON com profundidade

Get-ComputerInfo | ConvertTo-Json -Depth 3

HTML

Get-Service | ConvertTo-Html -Title "Serviços" | Out-File servicos.html

HTML com CSS

$css = @"

<style>

 body { font-family: Arial; }

 table { border-collapse: collapse; }

 th, td { border: 1px solid black; padding: 5px; }

 th { background-color: #4CAF50; color: white; }

</style>

"@

Get-Process | ConvertTo-Html -Head $css | Out-File processos.html

Pipeline Avançado - Técnicas

1. Pipeline com múltiplas transformações:

Get-EventLog -LogName Application -Newest 100 |

 Where-Object EntryType -eq 'Error' |

 Group-Object Source |

 Select-Object Name, Count |

 Sort-Object Count -Descending |

 Format-Table -AutoSize

2. Pipeline com foreach e variáveis:

$relatorio = Get-Process |

 Where-Object CPU -gt 10 |

 ForEach-Object {

 [PSCustomObject]@{

 Nome = $_.Name

 CPU = [math]::Round($_.CPU, 2)

 MemoriaMB = [math]::Round($_.WorkingSet / 1MB, 2)

 Threads = $_.Threads.Count

 }

 }

$relatorio | Export-Csv relatorio_processos.csv -NoTypeInformation

3. Pipeline com validação:

Get-ChildItem -Path C:\Logs -Filter *.log |

 Where-Object LastWriteTime -lt (Get-Date).AddDays(-30) |

 ForEach-Object {

 Write-Host "Deletando arquivo antigo: $($_.Name)"

 Remove-Item $_.FullName -WhatIf

 }

4. Pipeline com tratamento de erros:

$servidores = 'Server01', 'Server02', 'ServerInexistente'

$servidores | ForEach-Object {

 try {

 Test-Connection -ComputerName $_ -Count 1 -ErrorAction Stop

 [PSCustomObject]@{

 Servidor = $_

 Status = 'Online'

 Erro = $null

 }

 }

 catch {

 [PSCustomObject]@{

 Servidor = $_

 Status = 'OƯline'

 Erro = $_.Exception.Message

 }

 }

} | Format-Table -AutoSize

2.1.4 Descoberta de Comandos

Get-Command - Encontrando Cmdlets

Todos os comandos disponíveis

Get-Command

Filtrar por tipo

Get-Command -CommandType Cmdlet

Get-Command -CommandType Function

Get-Command -CommandType Alias

Buscar por padrão

Get-Command -Name *Service*

Get-Command -Verb Get

Get-Command -Noun Process

Buscar em módulo específico

Get-Command -Module Microsoft.PowerShell.Management

Buscar com wildcard

Get-Command Get-*Item*

Ver definição

Get-Command Get-Process | Format-List *

Get-Help - Sistema de Ajuda

Ajuda básica

Get-Help Get-Process

Ajuda detalhada

Get-Help Get-Process -Detailed

Ajuda completa

Get-Help Get-Process -Full

Apenas exemplos

Get-Help Get-Process -Examples

Ajuda online (abre no browser)

Get-Help Get-Process -Online

Buscar na ajuda

Get-Help *firewall*

Atualizar arquivos de ajuda

Update-Help -Force

Get-Member - Explorando Objetos

Ver membros de um objeto

Get-Process | Get-Member

Apenas propriedades

Get-Process | Get-Member -MemberType Property

Apenas métodos

Get-Process | Get-Member -MemberType Method

Buscar membro específico

Get-Process | Get-Member -Name *Memory*

Ver tipo do objeto

(Get-Process)[0].GetType()

Aliases - Atalhos para Comandos

Ver todos os aliases

Get-Alias

Alias específico

Get-Alias ls

Qual comando por trás do alias

Get-Alias -Definition Get-ChildItem

Criar alias temporário

Set-Alias -Name np -Value notepad.exe

Criar alias permanente (adicionar ao profile)

New-Alias -Name gh -Value Get-Help

Remover alias

Remove-Alias -Name np

Aliases comuns do PowerShell:

Alias Cmdlet Origem

ls, dir, gci Get-ChildItem Unix/DOS/PS

cd, chdir, sl Set-Location DOS/PS

cp, copy, cpi Copy-Item Unix/DOS/PS

Alias Cmdlet Origem

mv, move, mi Move-Item Unix/DOS/PS

rm, del, erase, ri Remove-Item Unix/DOS/PS

cat, type, gc Get-Content Unix/DOS/PS

ps, gps Get-Process Unix/PS

kill, spps Stop-Process Unix/PS

cls, clear Clear-Host DOS/Unix

man, help Get-Help Unix/DOS

pwd, gl Get-Location Unix/PS

 Importante: Evite usar aliases em scripts de produção. Use sempre os nomes
completos dos cmdlets para clareza e manutenibilidade.

2.2 Estruturas Condicionais e de Repetição

2.2.1 Variáveis no PowerShell

Antes de trabalhar com estruturas de controle, precisamos entender variáveis.

Declaração e Atribuição

Declaração simples (tipagem dinâmica)

$nome = "João"

$idade = 30

$ativo = $true

PowerShell infere o tipo automaticamente

$numero = 42 # System.Int32

$texto = "PowerShell" # System.String

$decimal = 3.14 # System.Double

Tipagem explícita (fortemente tipado)

[int]$quantidade = 100

[string]$mensagem = "Olá"

[datetime]$data = "2025-01-15"

[bool]$habilitado = $true

Múltiplas atribuições

$a, $b, $c = 1, 2, 3

$x = $y = $z = 0

Tipos de Dados Comuns

Numéricos

[byte]$byte = 255 # 0-255

[int16]$curto = 32767 # -32,768 a 32,767

[int]$inteiro = 2147483647 # -2.1B a 2.1B

[long]$longo = 9223372036854775807

[single]$flutuante = 3.14159

[double]$duplo = 3.141592653589793

[decimal]$monetario = 99.99

Texto

[string]$texto = "PowerShell"

[char]$caractere = 'A'

Booleano

[bool]$verdadeiro = $true

[bool]$falso = $false

Data e hora

[datetime]$agora = Get-Date

[datetime]$especifica = "2025-10-15 15:00:00"

Arrays

[array]$numeros = 1, 2, 3, 4, 5

[int[]]$inteiros = 10, 20, 30

Hashtables

[hashtable]$pessoa = @{

 Nome = "Maria"

 Idade = 28

 Cidade = "São Paulo"

}

Objetos customizados

[PSCustomObject]$produto = @{

 Nome = "Notebook"

 Preco = 3500.00

 Estoque = 15

}

Variáveis Automáticas

PowerShell possui variáveis automáticas predefinidas:

Variáveis do sistema

$PSVersionTable # Informações da versão

$HOME # Diretório home do usuário

$PWD # Diretório atual

$PID # ID do processo atual

Variáveis de resultado

$? # Status do último comando (true/false)

$_ ou $PSItem # Item atual no pipeline

$^ # Primeiro token do último comando

$$ # Último token do último comando

Variáveis de erro

$Error # Array com todos os erros

$LastExitCode # Código de saída do último programa nativo

Outras úteis

$null # Valor nulo

$true / $false # Booleanos

Escopo de Variáveis

Escopo local (padrão)

$local = "Visível apenas aqui"

Escopo script (todo o script)

$script:configuracao = "Disponível no script inteiro"

Escopo global (toda a sessão)

$global:importante = "Visível em todo lugar"

Escopo privado (não herdado por child scopes)

$private:secreto = "Não vaza"

Exemplo de uso

function Teste {

 $local = "Função"

 $script:nivel = "Script"

 Write-Host "Local: $local"

}

Teste

Write-Host "Script: $nivel"

Write-Host "Local: $local" #  Erro - fora do escopo

2.2.2 Operadores

Operadores Aritméticos

Operações básicas

$a = 10

$b = 3

$a + $b # 13 - Adição

$a - $b # 7 - Subtração

$a * $b # 30 - Multiplicação

$a / $b # 3.333... - Divisão

$a % $b # 1 - Módulo (resto)

Incremento e decremento

$contador = 0

$contador++ # 1

$contador-- # 0

++$contador # 1 (pré-incremento)

--$contador # 0 (pré-decremento)

Operações compostas

$total = 100

$total += 50 # $total = $total + 50

$total -= 20 # $total = $total - 20

$total *= 2 # $total = $total * 2

$total /= 4 # $total = $total / 4

Operadores de Comparação

Igualdade

$a -eq $b # Igual a

$a -ne $b # Diferente de

Maior/Menor

$a -gt $b # Maior que

$a -ge $b # Maior ou igual

$a -lt $b # Menor que

$a -le $b # Menor ou igual

Strings (case-insensitive por padrão)

"PowerShell" -eq "powershell" # True

"PowerShell" -ceq "powershell" # False (case-sensitive)

Like (wildcard)

"PowerShell" -like "Power*" # True

"PowerShell" -notlike "Java*" # True

Match (regex)

"PowerShell" -match "^Power" # True

"teste123" -match "\d+" # True

Contains (coleções)

1,2,3,4,5 -contains 3 # True

"João","Maria" -notcontains "Pedro" # True

In (elemento em coleção)

3 -in 1,2,3,4,5 # True

"Pedro" -notin "João","Maria" # True

Operadores case-sensitive (prefixo 'c')

"PowerShell" -ceq "PowerShell" # True (case-sensitive equal)

"PowerShell" -cne "powershell" # True (case-sensitive not equal)

"PowerShell" -clike "POWER*" # False

"PowerShell" -cmatch "^power" # False

Operadores Lógicos

AND

($a -gt 5) -and ($b -lt 10)

OR

($a -eq 10) -or ($b -eq 3)

NOT

-not ($a -eq 10)

!($a -eq 10) # Alternativa

XOR (exclusivo)

($a -eq 10) -xor ($b -eq 3)

Exemplos práticos

if (($idade -ge 18) -and ($habilitado -eq $true)) {

 Write-Host "Acesso permitido"

}

if (($status -eq "Ativo") -or ($tipo -eq "VIP")) {

 Write-Host "Processamento prioritário"

}

Operadores de Atribuição

Atribuição simples

$x = 10

Atribuições compostas

$x += 5 # $x = $x + 5

$x -= 3 # $x = $x - 3

$x *= 2 # $x = $x * 2

$x /= 4 # $x = $x / 4

$x %= 3 # $x = $x % 3

Operador de atribuição com null coalescing (PS 7+)

$nome ??= "Padrão" # Atribui apenas se $nome for $null

Exemplos

$total = 0

$total += 100

$total += 50

Write-Host "Total: $total" # 150

Operadores Especiais

Range (intervalo)

1..10 # Array de 1 a 10

10..1 # Array de 10 a 1

$inicio..$fim

Call (invocar)

& "C:\Scripts\teste.ps1"

& { Write-Host "Script block" }

Dot source (executar no escopo atual)

. "C:\Scripts\funcoes.ps1"

Array subexpression

@(Get-Process) # Garante que retorna array

Subexpression

"O resultado é: $(2 + 2)" # "O resultado é: 4"

Type cast

[int]"42" # Converte string para int

[string]123 # Converte int para string

Comma (criar array)

$array = 1, 2, 3, 4

Index (acessar elementos)

$array[0] # Primeiro elemento

$array[-1] # Último elemento

$array[1..3] # Elementos 1, 2 e 3

Join (juntar strings)

$nomes -join ", " # "João, Maria, Pedro"

Split (dividir strings)

"João,Maria,Pedro" -split ","

Replace (substituir)

"PowerShell" -replace "Power", "Super" # "SuperShell"

Operador ternário (PS 7+)

$resultado = $idade -ge 18 ? "Adulto" : "Menor"

Null coalescing (PS 7+)

$valor = $null

$padrao = $valor ?? "Padrão" # "Padrão"

Pipeline chain (PS 7+)

Get-Process && Write-Host "Sucesso" # Executa se anterior tiver sucesso

Get-Process || Write-Host "Falha" # Executa se anterior falhar

2.2.3 Estruturas Condicionais

If, ElseIf, Else

Sintaxe básica:

if (condição) {

 # código se condição verdadeira

}

if (condição) {

 # código se condição verdadeira

} else {

 # código se condição falsa

}

if (condição1) {

 # código se condição1 verdadeira

} elseif (condição2) {

 # código se condição2 verdadeira

} else {

 # código se todas falsas

}

Exemplos práticos:

Exemplo 1: Verificação simples

$idade = 25

if ($idade -ge 18) {

 Write-Host "Você é maior de idade"

}

Exemplo 2: If-Else

$nota = 7.5

if ($nota -ge 7) {

 Write-Host "Aprovado" -ForegroundColor Green

} else {

 Write-Host "Reprovado" -ForegroundColor Red

}

Exemplo 3: If-ElseIf-Else (classificação)

$nota = 8.5

if ($nota -ge 9) {

 $conceito = "A"

} elseif ($nota -ge 7) {

 $conceito = "B"

} elseif ($nota -ge 5) {

 $conceito = "C"

} else {

 $conceito = "D"

}

Write-Host "Conceito: $conceito"

Exemplo 4: Condições compostas

$saldo = 1500

$limite = 2000

$ativo = $true

if (($saldo -gt 0) -and $ativo) {

 Write-Host "Conta ativa com saldo positivo"

} elseif (($saldo -le 0) -and $ativo) {

 Write-Host "Conta ativa mas sem saldo"

} else {

 Write-Host "Conta inativa"

}

Exemplo 5: Verificando existência

$arquivo = "C:\temp\teste.txt"

if (Test-Path $arquivo) {

 $conteudo = Get-Content $arquivo

 Write-Host "Arquivo existe. Linhas: $($conteudo.Count)"

} else {

 Write-Host "Arquivo não encontrado"

 New-Item -Path $arquivo -ItemType File

}

Exemplo 6: Verificando tipo de objeto

$objeto = Get-Process | Select-Object -First 1

if ($objeto -is [System.Diagnostics.Process]) {

 Write-Host "É um objeto Process"

}

Exemplo 7: Verificando nulo

$variavel = $null

if ($null -eq $variavel) {

 Write-Host "Variável é nula"

}

Ou forma mais moderna (PS 7+)

if (-not $variavel) {

 Write-Host "Variável é nula, vazia ou false"

}

Switch

O Switch é ideal para múltiplas comparações com o mesmo valor.

Sintaxe básica:

switch (expressão) {

 valor1 { código1 }

 valor2 { código2 }

 default { código padrão }

}

Exemplos práticos:

Exemplo 1: Switch básico

$dia = "Segunda"

switch ($dia) {

 "Segunda" { Write-Host "Início da semana" }

 "Sexta" { Write-Host "Quase fim de semana!" }

 "Sábado" { Write-Host "Final de semana!" }

 "Domingo" { Write-Host "Final de semana!" }

 default { Write-Host "Meio da semana" }

}

Exemplo 2: Switch com múltiplos valores

$numero = 2

switch ($numero) {

 {$_ -lt 0} { Write-Host "Negativo" }

 0 { Write-Host "Zero" }

 {$_ -gt 0} { Write-Host "Positivo" }

}

Exemplo 3: Switch com arrays

$cores = "Vermelho", "Azul", "Verde"

switch ($cores) {

 "Vermelho" { Write-Host "Cor quente" }

 "Azul" { Write-Host "Cor fria" }

 "Verde" { Write-Host "Cor neutra" }

}

Exemplo 4: Switch com Regex

$texto = "PowerShell123"

switch -Regex ($texto) {

 '^\w+$' { Write-Host "Apenas letras e números" }

 '\d+' { Write-Host "Contém dígitos" }

 '^Power' { Write-Host "Começa com Power" }

}

Exemplo 5: Switch com Wildcard

$arquivo = "relatorio_2025.xlsx"

switch -Wildcard ($arquivo) {

 "*.txt" { Write-Host "Arquivo de texto" }

 "*.xlsx" { Write-Host "Planilha Excel" }

 "*.pdf" { Write-Host "Documento PDF" }

 default { Write-Host "Tipo desconhecido" }

}

Exemplo 6: Switch com File (lê linhas de arquivo)

$configFile = "C:\temp\config.txt"

"Server01","Server02","Server03" | Out-File $configFile

switch -File $configFile {

 "Server01" { Write-Host "Processando Server01" }

 "Server02" { Write-Host "Processando Server02" }

 default { Write-Host "Servidor: $_" }

}

Exemplo 7: Switch case-sensitive

$texto = "PowerShell"

switch -CaseSensitive ($texto) {

 "powershell" { Write-Host "Minúsculo" }

 "POWERSHELL" { Write-Host "Maiúsculo" }

 "PowerShell" { Write-Host "Capitalizado" }

}

Exemplo 8: Switch com break

$numero = 5

switch ($numero) {

 {$_ -gt 0} {

 Write-Host "Positivo"

 # Continue para próxima avaliação

 }

 {$_ -eq 5} {

 Write-Host "É cinco"

 break # Para execução aqui

 }

 {$_ -lt 10} {

 Write-Host "Menor que 10" # Não será executado por causa do break

 }

}

Operador Ternário (PowerShell 7+)

Sintaxe: condição ? valor_se_true : valor_se_false

Exemplo 1: Atribuição simples

$idade = 20

$categoria = $idade -ge 18 ? "Adulto" : "Menor"

Write-Host $categoria # Adulto

Exemplo 2: Em expressões

$nota = 8

Write-Host ($nota -ge 7 ? "Aprovado" : "Reprovado")

Exemplo 3: Aninhado

$pontos = 85

$nivel = $pontos -ge 90 ? "Ouro" : $pontos -ge 70 ? "Prata" : "Bronze"

Write-Host $nivel # Prata

Exemplo 4: Com operadores

$saldo = 100

$taxa = $saldo -gt 0 ? 0.05 : 0

$total = $saldo + ($saldo * $taxa)

Write-Host "Total: $total"

2.2.4 Estruturas de Repetição

For Loop

O loop for é usado quando você sabe quantas vezes quer iterar.

Sintaxe:

for (inicialização; condição; incremento) {

 # código

}

Exemplos práticos:

Exemplo 1: Loop básico

for ($i = 0; $i -lt 10; $i++) {

 Write-Host "Iteração: $i"

}

Exemplo 2: Loop decrescente

for ($i = 10; $i -ge 0; $i--) {

 Write-Host "Contagem regressiva: $i"

}

Exemplo 3: Pular de 2 em 2

for ($i = 0; $i -le 20; $i += 2) {

 Write-Host "Número par: $i"

}

Exemplo 4: Percorrer array com índice

$frutas = "Maçã", "Banana", "Laranja", "Uva"

for ($i = 0; $i -lt $frutas.Count; $i++) {

 Write-Host "[$i] $($frutas[$i])"

}

Exemplo 5: Loop aninhado (tabuada)

for ($i = 1; $i -le 5; $i++) {

 Write-Host "`nTabuada do $i :"

 for ($j = 1; $j -le 10; $j++) {

 $resultado = $i * $j

 Write-Host "$i x $j = $resultado"

 }

}

Exemplo 6: Múltiplas variáveis

for ($i = 0, $j = 10; $i -lt 5; $i++, $j--) {

 Write-Host "i = $i, j = $j"

}

Exemplo 7: Processando arquivos

$arquivos = Get-ChildItem -Path C:\Temp -Filter *.txt

for ($i = 0; $i -lt $arquivos.Count; $i++) {

 Write-Host "Processando arquivo $($i+1) de $($arquivos.Count):
$($arquivos[$i].Name)"

}

ForEach Loop

O loop foreach itera sobre coleções de objetos.

Sintaxe:

foreach ($item in $colecao) {

 # código

}

Exemplos práticos:

Exemplo 1: Iterar sobre array

$numeros = 1, 2, 3, 4, 5

foreach ($num in $numeros) {

 $quadrado = $num * $num

 Write-Host "$num ao quadrado = $quadrado"

}

Exemplo 2: Iterar sobre processos

$processos = Get-Process | Select-Object -First 5

foreach ($proc in $processos) {

 Write-Host "Processo: $($proc.Name) - ID: $($proc.Id)"

}

Exemplo 3: Iterar sobre arquivos

$arquivos = Get-ChildItem -Path C:\Temp -File

foreach ($arquivo in $arquivos) {

 $tamanhoKB = [math]::Round($arquivo.Length / 1KB, 2)

 Write-Host "$($arquivo.Name): $tamanhoKB KB"

}

Exemplo 4: Iterar sobre hashtable

$configuracoes = @{

 Servidor = "192.168.1.100"

 Porta = 8080

 SSL = $true

}

foreach ($config in $configuracoes.GetEnumerator()) {

 Write-Host "$($config.Key) = $($config.Value)"

}

Exemplo 5: Modificar elementos (nota: arrays são imutáveis)

$nomes = "joão", "maria", "pedro"

$nomesCapitalizados = @()

foreach ($nome in $nomes) {

 $nomesCapitalizados += (Get-Culture).TextInfo.ToTitleCase($nome)

}

$nomesCapitalizados

Exemplo 6: ForEach com objetos customizados

$funcionarios = @(

 [PSCustomObject]@{Nome="João"; Salario=3000}

 [PSCustomObject]@{Nome="Maria"; Salario=3500}

 [PSCustomObject]@{Nome="Pedro"; Salario=2800}

)

foreach ($func in $funcionarios) {

 $aumento = $func.Salario * 0.10

 $novoSalario = $func.Salario + $aumento

 Write-Host "$($func.Nome): R$ $($func.Salario) → R$ $novoSalario"

}

Exemplo 7: ForEach aninhado

$servidores = "Server01", "Server02"

$servicos = "wuauserv", "spooler"

foreach ($servidor in $servidores) {

 Write-Host "`nVerificando $servidor :"

 foreach ($servico in $servicos) {

 # Simulação - em produção usaria Invoke-Command

 Write-Host " Verificando serviço $servico"

 }

}

While Loop

O loop while executa enquanto uma condição for verdadeira.

Sintaxe:

while (condição) {

 # código

}

Exemplos práticos:

Exemplo 1: Contador simples

$contador = 0

while ($contador -lt 5) {

 Write-Host "Contador: $contador"

 $contador++

}

Exemplo 2: Aguardar condição

$processo = Get-Process notepad -ErrorAction SilentlyContinue

while ($processo) {

 Write-Host "Notepad ainda está rodando..."

 Start-Sleep -Seconds 2

 $processo = Get-Process notepad -ErrorAction SilentlyContinue

}

Write-Host "Notepad foi fechado"

Exemplo 3: Processar até entrada específica

$continuar = $true

while ($continuar) {

 $resposta = Read-Host "Digite 'sair' para terminar"

 if ($resposta -eq "sair") {

 $continuar = $false

 } else {

 Write-Host "Você digitou: $resposta"

 }

}

Exemplo 4: Tentativas com limite

$tentativas = 0

$maxTentativas = 3

$sucesso = $false

while (($tentativas -lt $maxTentativas) -and (-not $sucesso)) {

 $tentativas++

 Write-Host "Tentativa $tentativas de $maxTentativas"

 # Simulação de operação

 $resultado = Get-Random -Minimum 1 -Maximum 10

 if ($resultado -gt 5) {

 $sucesso = $true

 Write-Host "Sucesso!"

 } else {

 Write-Host "Falha. Tentando novamente..."

 }

}

if (-not $sucesso) {

 Write-Host "Todas as tentativas falharam"

}

Exemplo 5: Processar fila

$fila = 1..10

while ($fila.Count -gt 0) {

 $item = $fila[0]

 Write-Host "Processando item: $item"

 $fila = $fila[1..($fila.Count-1)]

 Start-Sleep -Milliseconds 500

}

Exemplo 6: Monitoramento

$limite = 80

$uso = (Get-Counter '\Processor(_Total)\% Processor
Time').CounterSamples.CookedValue

while ($uso -lt $limite) {

 Write-Host "Uso de CPU: $([math]::Round($uso,2))% (Limite: $limite%)"

 Start-Sleep -Seconds 5

 $uso = (Get-Counter '\Processor(_Total)\% Processor
Time').CounterSamples.CookedValue

}

Write-Host "ALERTA: CPU acima do limite!"

Do-While e Do-Until

Executam o bloco pelo menos uma vez antes de verificar a condição.

Sintaxe:

Do-While: repete enquanto condição for verdadeira

do {

 # código

} while (condição)

Do-Until: repete até condição ser verdadeira

do {

 # código

} until (condição)

Exemplos práticos:

Exemplo 1: Do-While básico

$numero = 0

do {

 Write-Host "Número: $numero"

 $numero++

} while ($numero -lt 5)

Exemplo 2: Do-Until básico

$contador = 0

do {

 Write-Host "Tentativa: $contador"

 $contador++

} until ($contador -eq 5)

Exemplo 3: Menu interativo com Do-While

do {

 Write-Host "`n===== MENU ====="

 Write-Host "1. Opção 1"

 Write-Host "2. Opção 2"

 Write-Host "3. Sair"

 $opcao = Read-Host "Escolha uma opção"

 switch ($opcao) {

 "1" { Write-Host "Opção 1 selecionada" }

 "2" { Write-Host "Opção 2 selecionada" }

 "3" { Write-Host "Saindo..." }

 default { Write-Host "Opção inválida" }

 }

} while ($opcao -ne "3")

Exemplo 4: Validação de entrada

do {

 $idade = Read-Host "Digite sua idade (18-100)"

 $idadeNum = [int]$idade

} while (($idadeNum -lt 18) -or ($idadeNum -gt 100))

Write-Host "Idade válida: $idadeNum"

Exemplo 5: Repetir até sucesso

$tentativa = 0

do {

 $tentativa++

 Write-Host "Tentando conectar... (Tentativa $tentativa)"

 $conexao = Test-Connection "8.8.8.8" -Count 1 -Quiet

 if (-not $conexao) {

 Start-Sleep -Seconds 2

 }

} until ($conexao)

Write-Host "Conexão estabelecida!"

Exemplo 6: Processar até lista vazia

$tarefas = @("Tarefa 1", "Tarefa 2", "Tarefa 3")

do {

 $tarefaAtual = $tarefas[0]

 Write-Host "Executando: $tarefaAtual"

 $tarefas = $tarefas[1..($tarefas.Count-1)]

} while ($tarefas.Count -gt 0)

Write-Host "Todas as tarefas concluídas!"

Break e Continue

Controlam o fluxo dentro dos loops.

Break: Sai completamente do loop

Exemplo 1: Break simples

for ($i = 1; $i -le 10; $i++) {

 if ($i -eq 5) {

 break

 }

 Write-Host $i

}

Saída: 1, 2, 3, 4

Exemplo 2: Break em While

$contador = 0

while ($true) {

 $contador++

 Write-Host "Iteração: $contador"

 if ($contador -eq 3) {

 Write-Host "Atingiu o limite, saindo..."

 break

 }

}

Exemplo 3: Break com label (loops aninhados)

:exterior for ($i = 1; $i -le 3; $i++) {

 for ($j = 1; $j -le 3; $j++) {

 Write-Host "i=$i, j=$j"

 if ($i -eq 2 -and $j -eq 2) {

 break exterior # Sai de ambos os loops

 }

 }

}

Exemplo 4: Buscar e parar quando encontrar

$numeros = 1..100

$alvo = 42

foreach ($num in $numeros) {

 Write-Host "Verificando: $num"

 if ($num -eq $alvo) {

 Write-Host "Encontrado: $alvo"

 break

 }

}

Continue: Pula para próxima iteração

Exemplo 1: Continue simples

for ($i = 1; $i -le 10; $i++) {

 if ($i % 2 -eq 0) {

 continue # Pula números pares

 }

 Write-Host $i

}

Saída: 1, 3, 5, 7, 9

Exemplo 2: Continue em ForEach

$arquivos = Get-ChildItem -Path C:\Temp

foreach ($arquivo in $arquivos) {

 if ($arquivo.Extension -ne ".txt") {

 continue # Pula se não for .txt

 }

 Write-Host "Processando: $($arquivo.Name)"

}

Exemplo 3: Continue com validação

$numeros = 1, "texto", 3, $null, 5, "erro", 7

foreach ($item in $numeros) {

 if ($item -isnot [int]) {

 Write-Host "Pulando item inválido: $item"

 continue

 }

 $resultado = $item * 2

 Write-Host "$item x 2 = $resultado"

}

Exemplo 4: Continue com múltiplas condições

$funcionarios = @(

 @{Nome="João"; Idade=25; Ativo=$true}

 @{Nome="Maria"; Idade=17; Ativo=$true}

 @{Nome="Pedro"; Idade=30; Ativo=$false}

 @{Nome="Ana"; Idade=28; Ativo=$true}

)

foreach ($func in $funcionarios) {

 if ($func.Idade -lt 18) {

 Write-Host "Pulando $($func.Nome) - Menor de idade"

 continue

 }

 if (-not $func.Ativo) {

 Write-Host "Pulando $($func.Nome) - Inativo"

 continue

 }

 Write-Host "Processando funcionário: $($func.Nome)"

}

Comparação entre Loops

Loop Quando usar Vantagens

for Número conhecido de iterações Controle preciso do contador

foreach Percorrer coleções Sintaxe simples, mais legível

while Condição pode ser falsa desde início Pode não executar nenhuma vez

do-while Deve executar pelo menos uma vez Garantia de execução mínima

do-until Lógica inversa do while Mais intuitivo em alguns casos

Conclusão da Seção 2

Nesta seção, exploramos em profundidade os fundamentos da sintaxe
PowerShell:

1. Cmdlets: Estrutura Verbo-Substantivo, parâmetros e descoberta de
comandos

2. Pipeline: O coração do PowerShell, passando objetos entre comandos

3. Variáveis e Operadores: Tipos de dados, escopos e operações

4. Estruturas Condicionais: If, Switch e operador ternário

5. Estruturas de Repetição: For, ForEach, While, Do-While/Until

6. Controle de Fluxo: Break e Continue

Com esses conceitos dominados, você tem a base necessária para escrever

scripts PowerShell eficientes e resolver problemas complexos de automação.

3. MANIPULAÇÃO DE OBJETOS E DADOS

3.1 Objetos, Propriedades e Métodos

3.1.1 Paradigma Orientado a Objetos no PowerShell

O que são Objetos?

No PowerShell, tudo é um objeto. Esta é a diferença fundamental entre
PowerShell e shells tradicionais como Bash ou CMD, que trabalham com texto
puro.

Conceito:

Um objeto é uma estrutura de dados que combina:

 Propriedades: Características ou atributos do objeto (dados)

 Métodos: Ações que o objeto pode executar (comportamentos)

 Tipo: Classificação do objeto na hierarquia .NET

Analogia do mundo real:

Objeto: Carro

├── Propriedades (características)

│ ├── Marca: "Toyota"

│ ├── Modelo: "Corolla"

│ ├── Ano: 2024

│ ├── Cor: "Prata"

│ └── Velocidade: 0

└── Métodos (ações)

├── Ligar()

├── Desligar()

├── Acelerar()

└── Frear()

Exemplo prático no PowerShell:

Obter um processo (objeto)

$processo = Get-Process -Name powershell | Select-Object -First 1

O processo é um objeto com propriedades e métodos

Write-Host "Tipo do objeto: $($processo.GetType().FullName)"

System.Diagnostics.Process

Acessar propriedades (dados)

Write-Host "Nome: $($processo.ProcessName)"

Write-Host "ID: $($processo.Id)"

Write-Host "Memória: $($processo.WorkingSet / 1MB) MB"

Chamar métodos (ações)

$processo.Kill() # Encerra o processo

$processo.Refresh() # Atualiza os dados

Diferença entre Texto e Objetos

Shells tradicionais (texto):

Linux/Bash - retorna TEXTO

$ ps aux | grep firefox

user 12345 2.5 3.2 /usr/bin/firefox

Para extrair o PID, é necessário parsing de texto

$ ps aux | grep firefox | awk '{print $2}'

PowerShell (objetos):

PowerShell - retorna OBJETOS

Get-Process -Name firefox

Acesso direto à propriedade, sem parsing

$firefox = Get-Process -Name firefox

$firefox.Id # Acesso direto ao PID como número

Operações matemáticas diretas

$firefox.WorkingSet / 1MB # Memória em MB

Vantagens dos objetos:

 脥� Acesso direto a propriedades

 脥� Tipos de dados preservados

 脥� Sem necessidade de parsing de texto

 脥� IntelliSense e autocompletar

 脥� Validação de tipos em tempo de execução

 脥� Métodos disponíveis para manipulação

3.1.2 Explorando Objetos com Get-Member

O cmdlet Get-Member é essencial para descobrir propriedades e métodos de
objetos.

Sintaxe e Uso Básico

Sintaxe

Get-Command | Get-Member

objeto | Get-Member [parâmetros]

Ver todos os membros de um objeto

Get-Process | Get-Member

Filtrar por tipo de membro

Get-Process | Get-Member -MemberType Property

Get-Process | Get-Member -MemberType Method

Get-Process | Get-Member -MemberType Event

Buscar membro específico

Get-Process | Get-Member -Name *Memory*

Ver membros estáticos

Get-Process | Get-Member -Static

Tipos de Membros

1. Properties (Propriedades)

Armazenam dados/características do objeto:

$processo = Get-Process | Select-Object -First 1

Ver todas as propriedades

$processo | Get-Member -MemberType Property

Propriedades comuns de Process:

$processo.Id # Int32 - ID do processo

$processo.ProcessName # String - Nome do processo

$processo.StartTime # DateTime - Hora de início

$processo.CPU # Double - Tempo de CPU

$processo.WorkingSet # Int64 - Memória física

$processo.Threads # ProcessThreadCollection - Threads

$processo.Handles # Int32 - Número de handles

Tipos de propriedades:

Properties (leitura e escrita)

$processo.PriorityClass = 'High'

Nota: Muitas propriedades são read-only

$processo.Id = 999 #  Erro - somente leitura

2. Methods (Métodos)

Executam ações ou retornam valores calculados:

$processo = Get-Process -Name notepad | Select-Object -First 1

Ver todos os métodos

$processo | Get-Member -MemberType Method

Métodos comuns de Process:

$processo.Kill() # Encerra o processo

$processo.CloseMainWindow() # Fecha janela principal

$processo.Refresh() # Atualiza dados do objeto

$processo.WaitForExit() # Aguarda encerramento

$processo.ToString() # Converte para string

Métodos podem ter parâmetros

$processo.WaitForExit(5000) # Aguarda até 5 segundos

Diferença entre propriedade e método:

Propriedade - acesso direto, sem parênteses

$processo.ProcessName

Método - execução de código, COM parênteses

$processo.ToString()

$processo.GetType()

Erro comum: esquecer parênteses em método

$processo.ToString #  Retorna informações do método, não executa

$processo.ToString() # 脥� Executa o método

3. Script Properties

Propriedades calculadas dinamicamente:

$arquivo = Get-ChildItem | Select-Object -First 1

$arquivo | Get-Member -MemberType ScriptProperty

Exemplos de ScriptProperties:

$arquivo.PSChildName # Nome do item

$arquivo.PSDrive # Drive onde está localizado

$arquivo.PSIsContainer # É um diretório?

$arquivo.PSPath # Caminho completo do provider

4. Nota Properties

Propriedades adicionadas dinamicamente por cmdlets:

Algumas propriedades são adicionadas por formatação

Get-Process | Format-Table | Get-Member -MemberType NoteProperty

5. Alias Properties

Nomes alternativos para propriedades existentes:

$arquivo = Get-ChildItem | Select-Object -First 1

$arquivo | Get-Member -MemberType AliasProperty

Exemplo: 'Name' pode ser um alias para 'PSChildName'

6. Events (Eventos)

Notificações que objetos podem disparar:

$processo = Get-Process | Select-Object -First 1

$processo | Get-Member -MemberType Event

Eventos comuns de Process:

- Exited: Disparado quando processo termina

- Disposed: Disparado quando objeto é liberado

Anatomia Completa de um Objeto

Criar um objeto para análise

$arquivo = Get-ChildItem C:\Windows\notepad.exe

1. Ver o tipo do objeto

$arquivo.GetType()

Retorna: System.IO.FileInfo

2. Ver hierarquia de herança

$arquivo.GetType().BaseType

FileSystemInfo -> MarshalByRefObject -> Object

3. Ver todos os membros

$arquivo | Get-Member

4. Propriedades mais comuns

$arquivo.Name # Nome do arquivo

$arquivo.FullName # Caminho completo

$arquivo.Length # Tamanho em bytes

$arquivo.Extension # Extensão (.exe)

$arquivo.Directory # Objeto DirectoryInfo

$arquivo.CreationTime # Data de criação

$arquivo.LastWriteTime # Última modificação

$arquivo.Attributes # Atributos (Hidden, ReadOnly, etc)

5. Métodos mais comuns

$arquivo.Delete() # Exclui o arquivo

$arquivo.MoveTo($destino) # Move o arquivo

$arquivo.CopyTo($destino) # Copia o arquivo

$arquivo.Refresh() # Atualiza informações

$arquivo.ToString() # Converte para string

$arquivo.GetHashCode() # Retorna hash code

6. Métodos de extensão do PowerShell

$arquivo | Get-Content # Lê conteúdo (arquivo texto)

$arquivo | Remove-Item # Remove o arquivo

3.1.3 Acessando Propriedades e Métodos

Notação de Ponto (Dot Notation)

Sintaxe: objeto.propriedade ou objeto.método()

Acessar propriedade

$processo = Get-Process | Select-Object -First 1

$nome = $processo.ProcessName

$memoria = $processo.WorkingSet

Chamar método

$tipo = $processo.GetType()

$texto = $processo.ToString()

Encadear (chaining)

$processo.StartTime.ToString("dd/MM/yyyy HH:mm:ss")

$arquivo.Directory.FullName

$texto.ToUpper().Substring(0, 5)

Acessar propriedade de propriedade

$processo.Threads.Count

$processo.MainModule.FileName

Propriedades Aninhadas

Objetos podem conter outros objetos

$servico = Get-Service | Select-Object -First 1

Propriedade simples

$servico.Name

Propriedade que é um objeto

$servico.ServicesDependedOn # Array de objetos ServiceController

Acessar propriedade do objeto aninhado

$servico.ServicesDependedOn[0].Name

Percorrer coleção aninhada

$servico.ServicesDependedOn | ForEach-Object {

 Write-Host "Dependência: $($_.Name)"

}

Operador de Acesso de Membro (Member Access Operator)

Quando o nome da propriedade está em uma variável

$propriedade = "ProcessName"

$processo = Get-Process | Select-Object -First 1

Não funciona:

$processo.$propriedade #  Tenta acessar literal "$propriedade"

Funciona:

$processo.$propriedade # 脥� Em alguns casos funciona

$processo.($propriedade) # 脥� Sintaxe explícita, sempre funciona

Exemplo prático

$propriedades = "Name", "Id", "CPU"

$processo = Get-Process | Select-Object -First 1

foreach ($prop in $propriedades) {

 $valor = $processo.($prop)

 Write-Host "$prop : $valor"

}

Métodos com Parâmetros

Métodos podem aceitar parâmetros

Método sem parâmetros

$texto = "PowerShell"

$texto.ToUpper() # "POWERSHELL"

Método com um parâmetro

$texto.Substring(5) # "Shell"

Método com múltiplos parâmetros

$texto.Substring(0, 5) # "Power"

Método com parâmetros nomeados (.NET style)

$arquivo.CopyTo("C:\destino\arquivo.txt", $true) # $true = sobrescrever

Descobrir assinatura de método

$texto | Get-Member -Name Substring

Mostrará todas as sobrecargas (overloads)

Métodos Estáticos

Métodos que pertencem à classe, não à instância:

Sintaxe: [Tipo]::Método()

Exemplos comuns

[Math]::Round(3.14159, 2) # 3.14

[Math]::Sqrt(16) # 4

[Math]::Max(10, 20) # 20

[Math]::Min(10, 20) # 10

[Math]::Abs(-42) # 42

[Math]::Pow(2, 8) # 256

[String]::IsNullOrEmpty($texto) # True/False

[String]::Join(", ", $array) # Une array em string

[DateTime]::Now # Data/hora atual

[DateTime]::Today # Data atual (00:00:00)

[DateTime]::ParseExact($string, $formato, $cultura)

[System.IO.Path]::GetFileName($caminho)

[System.IO.Path]::GetExtension($caminho)

[System.IO.Path]::Combine($parte1, $parte2)

[System.Environment]::MachineName # Nome do computador

[System.Environment]::UserName # Nome do usuário

[System.Environment]::OSVersion # Versão do SO

Listar métodos estáticos

[Math] | Get-Member -Static

[DateTime] | Get-Member -Static

3.1.4 Criando Objetos Customizados

PSCustomObject (Recomendado)

A forma moderna e recomendada de criar objetos:

Sintaxe básica

$objeto = [PSCustomObject]@{

 Propriedade1 = Valor1

 Propriedade2 = Valor2

}

Exemplo 1: Objeto simples

$pessoa = [PSCustomObject]@{

 Nome = "João Silva"

 Idade = 30

 Cidade = "São Paulo"

 Ativo = $true

}

Acessar propriedades

$pessoa.Nome # "João Silva"

$pessoa.Idade # 30

Modificar propriedades

$pessoa.Idade = 31

Exibir

$pessoa | Format-Table

$pessoa | Format-List

Exemplo 2: Múltiplos objetos

$funcionarios = @(

 [PSCustomObject]@{

 Nome = "Maria"

 Cargo = "Gerente"

 Salario = 8000

 },

 [PSCustomObject]@{

 Nome = "Pedro"

 Cargo = "Analista"

 Salario = 5000

 },

 [PSCustomObject]@{

 Nome = "Ana"

 Cargo = "Desenvolvedor"

 Salario = 6000

 }

)

Manipular coleção

$funcionarios | Where-Object Salario -gt 5500

$funcionarios | Sort-Object Salario -Descending

$funcionarios | Select-Object Nome, Cargo

Exemplo 3: Objeto com propriedades calculadas

$servidor = [PSCustomObject]@{

 Nome = $env:COMPUTERNAME

 SO = [System.Environment]::OSVersion.VersionString

 CPU = (Get-CimInstance Win32_Processor).Name

 MemoriaGB = [math]::Round((Get-CimInstance
Win32_ComputerSystem).TotalPhysicalMemory / 1GB, 2)

 DataConsulta = Get-Date

}

$servidor | Format-List

New-Object (Legado)

Forma antiga, menos eficiente:

Criar objeto COM

$shell = New-Object -ComObject WScript.Shell

$shell.Popup("Mensagem de teste")

Criar objeto .NET

$lista = New-Object System.Collections.ArrayList

$lista.Add("Item 1")

$lista.Add("Item 2")

Criar PSObject (forma antiga)

$objeto = New-Object PSObject -Property @{

 Nome = "Teste"

 Valor = 100

}

 Nota: Prefira [PSCustomObject] em código novo

Adicionando Propriedades a Objetos Existentes

Add-Member: adiciona propriedades/métodos dinamicamente

Exemplo 1: Adicionar propriedade simples

$processo = Get-Process | Select-Object -First 1

$processo | Add-Member -MemberType NoteProperty -Name "Categoria" -Value
"Sistema"

$processo.Categoria # "Sistema"

Exemplo 2: Adicionar propriedade calculada

$arquivo = Get-ChildItem | Select-Object -First 1

$arquivo | Add-Member -MemberType ScriptProperty -Name "TamanhoMB" -Value {

 [math]::Round($this.Length / 1MB, 2)

}

$arquivo.TamanhoMB

Exemplo 3: Adicionar método

$objeto = [PSCustomObject]@{Nome = "Teste"}

$objeto | Add-Member -MemberType ScriptMethod -Name "Saudar" -Value {

 "Olá, $($this.Nome)!"

}

$objeto.Saudar() # "Olá, Teste!"

Exemplo 4: Adicionar alias

$pessoa = [PSCustomObject]@{

 PrimeiroNome = "João"

 Sobrenome = "Silva"

}

$pessoa | Add-Member -MemberType AliasProperty -Name "Nome" -Value
"PrimeiroNome"

$pessoa.Nome # "João"

Exemplo 5: Enriquecer objetos em pipeline

Get-Process | Select-Object -First 3 | ForEach-Object {

 $_ | Add-Member -MemberType NoteProperty -Name "MemoriaMB" -Value
([math]::Round($_.WorkingSet / 1MB, 2))

 $_

} | Format-Table Name, Id, MemoriaMB

Select-Object para Criar Objetos

Select-Object pode criar objetos com propriedades específicas

Exemplo 1: Selecionar propriedades existentes

Get-Process | Select-Object Name, Id, CPU

Exemplo 2: Propriedades calculadas

Get-Process | Select-Object Name,

 @{Name='CPUTime'; Expression={$_.CPU}},

 @{Name='MemoryMB'; Expression={[math]::Round($_.WorkingSet / 1MB, 2)}}

Exemplo 3: Múltiplas propriedades calculadas

Get-ChildItem | Select-Object Name,

 @{N='SizeMB'; E={'{0:N2}' -f ($_.Length / 1MB)}},

 @{N='Modified'; E={$_.LastWriteTime.ToString('dd/MM/yyyy')}},

 @{N='IsLarge'; E={$_.Length -gt 1MB}}

Exemplo 4: Criar objeto completamente novo

$dados = Get-Process | Select-Object @{

 Name = 'Resumo'

 Expression = {"$($_.Name) - PID: $($_.Id)"}

}

Exemplo 5: Combinar com Group-Object

Get-Service | Group-Object Status | Select-Object @{

 Name = 'Status'

 Expression = {$_.Name}

}, @{

 Name = 'Quantidade'

 Expression = {$_.Count}

}, @{

 Name = 'Servicos'

 Expression = {$_.Group.Name -join ', '}

}

3.1.5 Trabalhando com Coleções

Arrays

Criar arrays

$numeros = 1, 2, 3, 4, 5

$nomes = @("João", "Maria", "Pedro")

$vazio = @()

$range = 1..10

Acessar elementos

$numeros[0] # Primeiro elemento (1)

$numeros[-1] # Último elemento (5)

$numeros[1..3] # Elementos 1, 2, 3

$numeros[-3..-1] # Últimos 3 elementos

Propriedades

$numeros.Count # Número de elementos

$numeros.Length # Mesmo que Count

Arrays são imutáveis (tamanho fixo)

$numeros += 6 # Cria um NOVO array

Iterar

foreach ($num in $numeros) {

 Write-Host $num

}

Métodos

$nomes.Contains("João") # True

[Array]::IndexOf($nomes, "Maria") # 1

[Array]::Reverse($numeros)

[Array]::Sort($nomes)

ArrayList (Coleção Dinâmica)

Criar ArrayList (mutável)

$lista = New-Object System.Collections.ArrayList

Adicionar elementos

$lista.Add("Item 1")

$lista.Add("Item 2")

$lista.Add("Item 3")

Ou usando casting

$lista = [System.Collections.ArrayList]@()

[void]$lista.Add("Item 1") # [void] suprime saída do índice

Inserir em posição

$lista.Insert(1, "Item 1.5")

Remover

$lista.Remove("Item 2") # Remove por valor

$lista.RemoveAt(0) # Remove por índice

$lista.Clear() # Remove todos

Propriedades e métodos

$lista.Count

$lista.Contains("Item 1")

$lista.IndexOf("Item 3")

Hashtables

Criar hashtable

$config = @{

 Servidor = "192.168.1.100"

 Porta = 8080

 SSL = $true

 Timeout = 30

}

Acessar valores

$config["Servidor"]

$config.Servidor # Sintaxe alternativa

Adicionar/modificar

$config["Usuario"] = "admin"

$config.Senha = "senha123"

Remover

$config.Remove("Senha")

Verificar existência

$config.ContainsKey("Servidor") # True

$config.ContainsValue(8080) # True

Iterar

foreach ($item in $config.GetEnumerator()) {

 Write-Host "$($item.Key) = $($item.Value)"

}

Propriedades e métodos

$config.Keys # Coleção de chaves

$config.Values # Coleção de valores

$config.Count # Número de itens

Hashtable ordenada

$ordenado = [ordered]@{

 Primeiro = 1

 Segundo = 2

 Terceiro = 3

}

Generic Lists (Coleções Tipadas)

List<T> - coleção tipada e performática

Criar lista de strings

$nomes = [System.Collections.Generic.List[string]]::new()

$nomes.Add("João")

$nomes.Add("Maria")

Criar lista de inteiros

$numeros = [System.Collections.Generic.List[int]]::new()

$numeros.Add(10)

$numeros.Add(20)

Criar lista de objetos customizados

$pessoas = [System.Collections.Generic.List[PSCustomObject]]::new()

$pessoas.Add([PSCustomObject]@{Nome="João"; Idade=30})

$pessoas.Add([PSCustomObject]@{Nome="Maria"; Idade=25})

Métodos disponíveis

$nomes.Contains("João")

$nomes.IndexOf("Maria")

$nomes.Remove("João")

$nomes.Clear()

$nomes.Sort()

Vantagens: tipagem forte, performance, IntelliSense

3.1.6 Conversão e Comparação de Objetos

Type Casting (Conversão de Tipos)

Conversão explícita

$texto = "42"

$numero = [int]$texto # 42 (Int32)

$numeroDecimal = "3.14"

$double = [double]$numeroDecimal # 3.14

$dataTexto = "2025-10-15"

$data = [datetime]$dataTexto

Conversões comuns

[string]123 # "123"

[int]"456" # 456

[bool]1 # True

[bool]0 # False

[char]65 # 'A'

Conversão com validação

try {

 $valor = [int]"abc" # Lança exceção

}

catch {

 Write-Host "Conversão inválida"

}

Operador -as (conversão segura)

$resultado = "abc" -as [int] # $null se falhar (não lança exceção)

if ($resultado -eq $null) {

 Write-Host "Conversão falhou"

}

Verificação de Tipo

Operador -is

$numero = 42

$numero -is [int] # True

$numero -is [string] # False

$processo = Get-Process | Select-Object -First 1

$processo -is [System.Diagnostics.Process] # True

Operador -isnot

$texto = "PowerShell"

$texto -isnot [int] # True

GetType()

$objeto = Get-Date

$objeto.GetType() # System.DateTime

$objeto.GetType().FullName # Nome completo do tipo

$objeto.GetType().BaseType # Tipo base

Verificar em estruturas condicionais

if ($variavel -is [array]) {

 Write-Host "É um array"

}

elseif ($variavel -is [hashtable]) {

 Write-Host "É uma hashtable"

}

Compare-Object

Comparar dois conjuntos de objetos

Exemplo 1: Comparar arrays simples

$lista1 = "A", "B", "C", "D"

$lista2 = "B", "C", "D", "E"

Compare-Object -ReferenceObject $lista1 -DiƯerenceObject $lista2

Mostra diferenças:

<= (só em Reference)

=> (só em DiƯerence)

Exemplo 2: Incluir itens iguais

Compare-Object $lista1 $lista2 -IncludeEqual

== (em ambos)

Exemplo 3: Comparar processos

$antes = Get-Process

Start-Process notepad

$depois = Get-Process

Compare-Object $antes $depois -Property Name

Exemplo 4: Comparar arquivos

$origem = Get-ChildItem C:\Origem

$destino = Get-ChildItem C:\Destino

Compare-Object $origem $destino -Property Name, Length

Exemplo 5: Apenas mostrar diferenças

$dif = Compare-Object $lista1 $lista2 -PassThru

$somenteEm1 = $dif | Where-Object {$_.SideIndicator -eq '<='}

$somenteEm2 = $dif | Where-Object {$_.SideIndicator -eq '=>'}

Where-Object vs .Where()

Where-Object (cmdlet)

Get-Process | Where-Object CPU -gt 10

Get-Process | Where-Object {$_.WorkingSet -gt 100MB}

.Where() (método de array - PS 4.0+)

$processos = Get-Process

$processos.Where({$_.CPU -gt 10})

Diferenças:

- .Where() é mais rápido para grandes coleções

- .Where() não funciona no pipeline direto

- .Where() tem opções adicionais

Opções do .Where()

$numeros = 1..10

Default: retorna todos que atendem condição

$numeros.Where({$_ -gt 5})

First: retorna primeiro que atende

$numeros.Where({$_ -gt 5}, 'First')

First N: retorna primeiros N que atendem

$numeros.Where({$_ -gt 5}, 'First', 3)

Last: retorna último que atende

$numeros.Where({$_ -gt 5}, 'Last')

SkipUntil: pula até encontrar

$numeros.Where({$_ -gt 5}, 'SkipUntil')

Until: retorna até encontrar

$numeros.Where({$_ -gt 5}, 'Until')

Split: separa em dois grupos

$resultado = $numeros.Where({$_ -gt 5}, 'Split')

$maiores = $resultado[0]

$menores = $resultado[1]

3.1.7 Exemplos Práticos Avançados

Exemplo 1: Relatório de Processos

Criar relatório detalhado de processos

$relatorio = Get-Process | Where-Object {$_.WorkingSet -gt 50MB} | ForEach-
Object {

 [PSCustomObject]@{

 Processo = $_.ProcessName

 PID = $_.Id

 'Memória (MB)' = [math]::Round($_.WorkingSet / 1MB, 2)

 'CPU (s)' = [math]::Round($_.CPU, 2)

 Threads = $_.Threads.Count

 'Tempo Execução' = if ($_.StartTime) {

 (Get-Date) - $_.StartTime | Select-Object -ExpandProperty TotalHours |
ForEach-Object {[math]::Round($_, 2)}

 } else {

 "N/A"

 }

 Empresa = $_.Company

 Caminho = $_.Path

 }

}

Exibir ordenado por memória

$relatorio | Sort-Object 'Memória (MB)' -Descending | Format-Table -AutoSize

Exportar para CSV

$relatorio | Export-Csv "processos_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv" -NoTypeInformation

Exemplo 2: Inventário de Sistema

Coletar informações detalhadas do sistema

$inventario = [PSCustomObject]@{

 # Informações do computador

 NomeComputador = $env:COMPUTERNAME

 Usuario = $env:USERNAME

 DataColeta = Get-Date

 # Sistema Operacional

 SO = (Get-CimInstance Win32_OperatingSystem).Caption

 Versao = [System.Environment]::OSVersion.Version.ToString()

 Arquitetura = (Get-CimInstance Win32_OperatingSystem).OSArchitecture

 # Hardware

 Processador = (Get-CimInstance Win32_Processor).Name

 NucleosFisicos = (Get-CimInstance Win32_Processor).NumberOfCores

 NucleosLogicos = (Get-CimInstance
Win32_Processor).NumberOfLogicalProcessors

 # Memória

 MemoriaTotalGB = [math]::Round((Get-CimInstance
Win32_ComputerSystem).TotalPhysicalMemory / 1GB, 2)

 MemoriaLivreGB = [math]::Round((Get-CimInstance
Win32_OperatingSystem).FreePhysicalMemory / 1MB, 2)

 # Disco

 Discos = (Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3") | ForEach-
Object {

 [PSCustomObject]@{

 Letra = $_.DeviceID

 TamanhoGB = [math]::Round($_.Size / 1GB, 2)

 LivreGB = [math]::Round($_.FreeSpace / 1GB, 2)

 PercentualLivre = [math]::Round(($_.FreeSpace / $_.Size) * 100, 2)

 }

 }

 # Rede

 Adaptadores = (Get-NetAdapter | Where-Object Status -eq 'Up').Name -join ', '

 EnderecoIP = (Get-NetIPAddress -AddressFamily IPv4 | Where-Object
{$_.InterfaceAlias -notlike '*Loopback*'}).IPAddress -join ', '

}

Exibir

$inventario | Format-List

$inventario.Discos | Format-Table -AutoSize

Exemplo 3: Monitoramento de Serviços

Monitorar serviços críticos

$servicosCriticos = "wuauserv", "BITS", "Spooler", "W32Time", "WinRM"

$status = foreach ($servico in $servicosCriticos) {

 $svc = Get-Service -Name $servico -ErrorAction SilentlyContinue

 [PSCustomObject]@{

 Servico = $servico

 DisplayName = if ($svc) { $svc.DisplayName } else { "Não encontrado" }

 Status = if ($svc) { $svc.Status } else { "N/A" }

 TipoInicio = if ($svc) { $svc.StartType } else { "N/A" }

 Alerta = if ($svc -and $svc.Status -ne 'Running') { " ATENÇÃO" } else { "脥�
OK" }

 DataVerificacao = Get-Date -Format "dd/MM/yyyy HH:mm:ss"

 }

}

Exibir com cores

$status | ForEach-Object {

 $cor = if ($_.Alerta -like "*ATENÇÃO*") { 'Red' } else { 'Green' }

 Write-Host "$($_.Servico) - $($_.Status)" -ForegroundColor $cor

}

Salvar log

$status | Export-Csv "status_servicos.csv" -NoTypeInformation -Append

3.2 Importação/Exportação de Dados

3.2.1 Trabalhando com CSV (Comma-Separated Values)

Export-Csv - Exportando para CSV

Sintaxe básica

objeto | Export-Csv -Path caminho.csv

Exemplo 1: Exportar processos

Get-Process | Export-Csv processos.csv

Problema: inclui informação de tipo

Solução: usar -NoTypeInformation

Get-Process | Export-Csv processos.csv -NoTypeInformation

Exemplo 2: Especificar delimitador

Get-Process | Export-Csv processos.csv -Delimiter ';' -NoTypeInformation

Exemplo 3: Especificar encoding

Get-Service | Export-Csv servicos.csv -Encoding UTF8 -NoTypeInformation

Exemplo 4: Append (adicionar ao arquivo existente)

Get-Process -Name powershell | Export-Csv log.csv -Append -NoTypeInformation

Exemplo 5: Selecionar propriedades específicas

Get-Process | Select-Object Name, Id, CPU, WorkingSet |

 Export-Csv processos_simples.csv -NoTypeInformation

Exemplo 6: Com propriedades calculadas

Get-Process | Select-Object Name,

 @{N='MemoryMB'; E={[math]::Round($_.WorkingSet / 1MB, 2)}},

 @{N='CPUTime'; E={[math]::Round($_.CPU, 2)}} |

 Export-Csv processos_formatado.csv -NoTypeInformation

Exemplo 7: Exportar objetos customizados

$dados = @(

 [PSCustomObject]@{Nome="João"; Idade=30; Cidade="SP"}

 [PSCustomObject]@{Nome="Maria"; Idade=25; Cidade="RJ"}

 [PSCustomObject]@{Nome="Pedro"; Idade=35; Cidade="MG"}

)

$dados | Export-Csv funcionarios.csv -NoTypeInformation

Import-Csv - Importando de CSV

Sintaxe básica

$dados = Import-Csv -Path caminho.csv

Exemplo 1: Importação básica

$processos = Import-Csv processos.csv

Os dados são retornados como objetos PSCustomObject

$processos[0].Name

$processos[0].CPU

Exemplo 2: Especificar delimitador

$dados = Import-Csv arquivo.csv -Delimiter ';'

Exemplo 3: Especificar encoding

$dados = Import-Csv arquivo.csv -Encoding UTF8

Exemplo 4: CSV sem cabeçalho

$dados = Import-Csv sem_cabecalho.csv -Header "Col1", "Col2", "Col3"

Exemplo 5: Filtrar durante importação

$processosAltoUso = Import-Csv processos.csv | Where-Object {[int]$_.CPU -gt
10}

Exemplo 6: Converter tipos após importação

$funcionarios = Import-Csv funcionarios.csv | ForEach-Object {

 [PSCustomObject]@{

 Nome = $_.Nome

 Idade = [int]$_.Idade # Converter para inteiro

 Cidade = $_.Cidade

 Ativo = [bool]$_.Ativo # Converter para booleano

 Salario = [decimal]$_.Salario # Converter para decimal

 }

}

Exemplo 7: Processar em lote

Import-Csv usuarios.csv | ForEach-Object {

 New-ADUser -Name $_.Nome -GivenName $_.PrimeiroNome -Surname
$_.Sobrenome

}

ConvertTo-Csv e ConvertFrom-Csv

Diferente de Export/Import, estes convertem para/de formato CSV sem salvar em
arquivo:

ConvertTo-Csv: converte objeto para string CSV

$processos = Get-Process | Select-Object -First 3

$csv = $processos | ConvertTo-Csv -NoTypeInformation

$csv é um array de strings

$csv | ForEach-Object { Write-Host $_ }

Pode ser útil para enviar por rede, email, etc

$csv | Out-File temp.csv

ConvertFrom-Csv: converte string CSV para objetos

$textoCSV = @"

Nome,Idade,Cidade

João,30,São Paulo

Maria,25,Rio de Janeiro

Pedro,35,Belo Horizonte

"@

$objetos = $textoCSV | ConvertFrom-Csv

$objetos | Format-Table

Exemplo prático: ler CSV da web

$url = "https://exemplo.com/dados.csv"

$dados = (Invoke-WebRequest $url).Content | ConvertFrom-Csv

Exemplo Completo: Sistema de Gerenciamento

Sistema simples de cadastro de produtos

Estrutura do CSV

$arquivoCSV = "produtos.csv"

Função para adicionar produto

function Add-Produto {

 param(

 [string]$Codigo,

 [string]$Nome,

 [decimal]$Preco,

 [int]$Estoque

)

 $produto = [PSCustomObject]@{

 Codigo = $Codigo

 Nome = $Nome

 Preco = $Preco

 Estoque = $Estoque

 DataCadastro = Get-Date -Format "dd/MM/yyyy HH:mm:ss"

 }

 $produto | Export-Csv $arquivoCSV -Append -NoTypeInformation

 Write-Host "Produto $Nome cadastrado com sucesso!" -ForegroundColor Green

}

Função para listar produtos

function Get-Produtos {

 if (Test-Path $arquivoCSV) {

 $produtos = Import-Csv $arquivoCSV

 $produtos | ForEach-Object {

 [PSCustomObject]@{

 Codigo = $_.Codigo

 Nome = $_.Nome

 Preco = [decimal]$_.Preco

 Estoque = [int]$_.Estoque

 DataCadastro = $_.DataCadastro

 }

 }

 } else {

 Write-Host "Nenhum produto cadastrado." -ForegroundColor Yellow

 }

}

Função para buscar produto

function Find-Produto {

 param([string]$Codigo)

 $produtos = Get-Produtos

 $produtos | Where-Object Codigo -eq $Codigo

}

Função para atualizar estoque

function Update-Estoque {

 param(

 [string]$Codigo,

 [int]$Quantidade

)

 $produtos = Import-Csv $arquivoCSV | ForEach-Object {

 if ($_.Codigo -eq $Codigo) {

 $_.Estoque = [int]$_.Estoque + $Quantidade

 }

 $_

 }

 $produtos | Export-Csv $arquivoCSV -NoTypeInformation -Force

 Write-Host "Estoque atualizado!" -ForegroundColor Green

}

Uso

Add-Produto -Codigo "001" -Nome "Mouse" -Preco 45.90 -Estoque 50

Add-Produto -Codigo "002" -Nome "Teclado" -Preco 120.00 -Estoque 30

Get-Produtos | Format-Table -AutoSize

Update-Estoque -Codigo "001" -Quantidade 10

Find-Produto -Codigo "001"

3.2.2 Trabalhando com JSON (JavaScript Object Notation)

JSON é um formato leve e amplamente usado para troca de dados, especialmente
em APIs REST.

ConvertTo-Json - Convertendo para JSON

Sintaxe básica

objeto | ConvertTo-Json

Exemplo 1: Objeto simples

$pessoa = [PSCustomObject]@{

 Nome = "João Silva"

 Idade = 30

 Email = "joao@email.com"

}

$json = $pessoa | ConvertTo-Json

Write-Host $json

Saída:

{

"Nome": "João Silva",

"Idade": 30,

"Email": "joao@email.com"

}

Exemplo 2: Array de objetos

$funcionarios = @(

 [PSCustomObject]@{Nome="João"; Cargo="Gerente"}

 [PSCustomObject]@{Nome="Maria"; Cargo="Analista"}

)

$funcionarios | ConvertTo-Json

Exemplo 3: Profundidade (padrão é 2 níveis)

$objeto = @{

 Nivel1 = @{

 Nivel2 = @{

 Nivel3 = @{

 Dado = "Profundo"

 }

 }

 }

}

Com profundidade padrão (2)

$objeto | ConvertTo-Json

Aumentar profundidade

$objeto | ConvertTo-Json -Depth 5

Exemplo 4: Compacto (sem formatação)

$dados | ConvertTo-Json -Compress

Exemplo 5: Processos para JSON

Get-Process | Select-Object -First 3 Name, Id, CPU | ConvertTo-Json

Exemplo 6: Salvar em arquivo

$config = @{

 Servidor = "192.168.1.100"

 Porta = 8080

 SSL = $true

 Timeout = 30

}

$config | ConvertTo-Json | Out-File config.json -Encoding UTF8

Exemplo 7: Hashtable aninhada

$configuracao = @{

 Aplicacao = @{

 Nome = "MeuApp"

 Versao = "1.0.0"

 }

 Banco = @{

 Servidor = "localhost"

 Porta = 5432

 Nome = "meubanco"

 }

 Recursos = @("Recurso1", "Recurso2", "Recurso3")

}

$configuracao | ConvertTo-Json -Depth 3 | Out-File app_config.json

ConvertFrom-Json - Convertendo de JSON

Sintaxe básica

$objeto = $jsonString | ConvertFrom-Json

Exemplo 1: Parsing básico

$jsonTexto = '{"Nome":"João","Idade":30,"Cidade":"São Paulo"}'

$objeto = $jsonTexto | ConvertFrom-Json

$objeto.Nome # "João"

$objeto.Idade # 30

Exemplo 2: Ler de arquivo

$config = Get-Content config.json -Raw | ConvertFrom-Json

$config.Servidor

$config.Porta

Exemplo 3: Array JSON

$jsonArray = '[

 {"Nome":"João","Idade":30},

 {"Nome":"Maria","Idade":25}

]'

$pessoas = $jsonArray | ConvertFrom-Json

$pessoas.Count # 2

$pessoas[0].Nome # "João"

Exemplo 4: JSON aninhado

$jsonComplexo = @'

{

 "Empresa": "TechCorp",

 "Funcionarios": [

 {

 "Nome": "João",

 "Cargo": "Gerente",

 "Contato": {

 "Email": "joao@tech.com",

 "Telefone": "11-99999-9999"

 }

 },

 {

 "Nome": "Maria",

 "Cargo": "Analista",

 "Contato": {

 "Email": "maria@tech.com",

 "Telefone": "11-88888-8888"

 }

 }

]

}

'@

$dados = $jsonComplexo | ConvertFrom-Json

$dados.Empresa

$dados.Funcionarios[0].Nome

$dados.Funcionarios[0].Contato.Email

Exemplo 5: Consumir API REST

$url = "https://api.github.com/users/powershell"

$resposta = Invoke-RestMethod -Uri $url # Já retorna como objeto

Ou manualmente:

$respostaTexto = Invoke-WebRequest -Uri $url

$dados = $respostaTexto.Content | ConvertFrom-Json

$dados.login

$dados.public_repos

Exemplo 6: Modificar e salvar

$config = Get-Content config.json -Raw | ConvertFrom-Json

$config.Porta = 9090

$config.SSL = $false

$config | ConvertTo-Json | Set-Content config.json

Exemplo 7: Tratar JSON inválido

try {

 $jsonInvalido = '{"Nome":"João","Idade":}' # JSON malformado

 $objeto = $jsonInvalido | ConvertFrom-Json

}

catch {

 Write-Host "Erro ao processar JSON: $($_.Exception.Message)" -
ForegroundColor Red

}

Exemplo Completo: Configuração de Aplicação

Sistema de configuração usando JSON

$arquivoConfig = "app_settings.json"

Estrutura de configuração padrão

$configPadrao = @{

 Aplicacao = @{

 Nome = "Sistema de Gestão"

 Versao = "2.0.0"

 Ambiente = "Desenvolvimento"

 }

 Banco = @{

 Servidor = "localhost"

 Porta = 1433

 Nome = "GestaoDb"

 Usuario = "sa"

 Timeout = 30

 }

 Email = @{

 SMTP = "smtp.empresa.com"

 Porta = 587

 SSL = $true

 Remetente = "sistema@empresa.com"

 }

 Logs = @{

 Nivel = "Info"

 Caminho = "C:\Logs\Sistema"

 TamanhoMaximoMB = 100

 RetencaoDias = 30

 }

 Recursos = @(

 "Usuarios",

 "Relatorios",

 "Dashboard",

 "Auditoria"

)

}

Criar configuração se não existir

if (-not (Test-Path $arquivoConfig)) {

 $configPadrao | ConvertTo-Json -Depth 5 | Out-File $arquivoConfig -Encoding
UTF8

 Write-Host "Arquivo de configuração criado: $arquivoConfig" -ForegroundColor
Green

}

Ler configuração

function Get-Configuracao {

 if (Test-Path $arquivoConfig) {

 Get-Content $arquivoConfig -Raw | ConvertFrom-Json

 } else {

 Write-Host "Arquivo de configuração não encontrado!" -ForegroundColor Red

 }

}

Atualizar configuração

function Set-Configuracao {

 param(

 [string]$Secao,

 [string]$Chave,

 $Valor

)

 $config = Get-Configuracao

 $config.$Secao.$Chave = $Valor

 $config | ConvertTo-Json -Depth 5 | Set-Content $arquivoConfig -Encoding UTF8

 Write-Host "Configuração atualizada: $Secao.$Chave = $Valor" -
ForegroundColor Green

}

Exibir configuração formatada

function Show-Configuracao {

 $config = Get-Configuracao

 Write-Host "`n=== CONFIGURAÇÃO DO SISTEMA ===" -ForegroundColor Cyan

 Write-Host "`n[Aplicação]" -ForegroundColor Yellow

 Write-Host " Nome: $($config.Aplicacao.Nome)"

 Write-Host " Versão: $($config.Aplicacao.Versao)"

 Write-Host " Ambiente: $($config.Aplicacao.Ambiente)"

 Write-Host "`n[Banco de Dados]" -ForegroundColor Yellow

 Write-Host " Servidor: $($config.Banco.Servidor)"

 Write-Host " Porta: $($config.Banco.Porta)"

 Write-Host " Database: $($config.Banco.Nome)"

 Write-Host "`n[Email]" -ForegroundColor Yellow

 Write-Host " SMTP: $($config.Email.SMTP)"

 Write-Host " Porta: $($config.Email.Porta)"

 Write-Host " SSL: $($config.Email.SSL)"

 Write-Host "`n[Logs]" -ForegroundColor Yellow

 Write-Host " Nível: $($config.Logs.Nivel)"

 Write-Host " Caminho: $($config.Logs.Caminho)"

 Write-Host "`n[Recursos Habilitados]" -ForegroundColor Yellow

 $config.Recursos | ForEach-Object { Write-Host " - $_" }

}

Validar configuração

function Test-Configuracao {

 $config = Get-Configuracao

 $erros = @()

 # Validar banco

 if (-not (Test-Connection $config.Banco.Servidor -Count 1 -Quiet)) {

 $erros += "Servidor de banco inacessível: $($config.Banco.Servidor)"

 }

 # Validar caminho de logs

 if (-not (Test-Path $config.Logs.Caminho)) {

 try {

 New-Item -Path $config.Logs.Caminho -ItemType Directory -Force | Out-Null

 Write-Host "Diretório de logs criado: $($config.Logs.Caminho)" -
ForegroundColor Green

 }

 catch {

 $erros += "Não foi possível criar diretório de logs: $($config.Logs.Caminho)"

 }

 }

 if ($erros.Count -eq 0) {

 Write-Host "Configuração válida!" -ForegroundColor Green

 return $true

 } else {

 Write-Host "Erros encontrados na configuração:" -ForegroundColor Red

 $erros | ForEach-Object { Write-Host " - $_" -ForegroundColor Red }

 return $false

 }

}

Uso

Show-Configuracao

Set-Configuracao -Secao "Banco" -Chave "Porta" -Valor 1434

Test-Configuracao

3.2.3 Trabalhando com XML

XML é usado extensivamente no Windows e em configurações de aplicações.

Export-Clixml e Import-Clixml

Serialização completa de objetos PowerShell (preserva tipos):

Export-Clixml: serializa objeto para XML

Get-Process | Export-Clixml processos.xml

O arquivo XML contém metadados de tipo completos

Get-Content processos.xml | Select-Object -First 20

Import-Clixml: deserializa de XML

$processos = Import-Clixml processos.xml

Tipos e propriedades são preservados

$processos[0].GetType() # System.Diagnostics.Process

$processos[0].CPU # Ainda é um Double

Exemplo prático: salvar estado

$estadoAntes = Get-Service

$estadoAntes | Export-Clixml servicos_antes.xml

Fazer mudanças...

Stop-Service wuauserv

Comparar depois

$estadoDepois = Get-Service

$estadoAntes = Import-Clixml servicos_antes.xml

Compare-Object $estadoAntes $estadoDepois -Property Name, Status

Exemplo: cache de dados

$dadosAPI = Invoke-RestMethod "https://api.exemplo.com/dados"

$dadosAPI | Export-Clixml cache_api.xml

Ler do cache (sem chamar API novamente)

$dadosCache = Import-Clixml cache_api.xml

ConvertTo-Xml

Converte objetos para formato XML (não preserva tipos complexos):

Sintaxe básica

objeto | ConvertTo-Xml

Exemplo 1: Converter processo

$processo = Get-Process | Select-Object -First 1

$xml = $processo | ConvertTo-Xml

$xml.GetType() # System.Xml.XmlDocument

Exemplo 2: Sem declaração XML e root

$xml = Get-Service | Select-Object -First 3 | ConvertTo-Xml -NoTypeInformation -As
String

Exemplo 3: Profundidade

$dados = @{

 Nivel1 = @{

 Nivel2 = @{

 Valor = "Teste"

 }

 }

}

$xml = $dados | ConvertTo-Xml -Depth 3

Salvar em arquivo

$xml.Save("C:\temp\dados.xml")

Trabalhando com XML Nativo

Criar documento XML

[xml]$xml = @"

<?xml version="1.0" encoding="UTF-8"?>

<Empresa>

 <Nome>TechCorp</Nome>

 <Funcionarios>

 <Funcionario id="1">

 <Nome>João Silva</Nome>

 <Cargo>Gerente</Cargo>

 <Salario>8000</Salario>

 </Funcionario>

 <Funcionario id="2">

 <Nome>Maria Santos</Nome>

 <Cargo>Analista</Cargo>

 <Salario>5000</Salario>

 </Funcionario>

 </Funcionarios>

</Empresa>

"@

Acessar elementos (dot notation)

$xml.Empresa.Nome # "TechCorp"

$xml.Empresa.Funcionarios.Funcionario.Count # 2

$xml.Empresa.Funcionarios.Funcionario[0].Nome # "João Silva"

Acessar atributos

$xml.Empresa.Funcionarios.Funcionario[0].id # "1"

Selecionar com XPath

$xml.SelectNodes("//Funcionario[@id='1']")

$xml.SelectNodes("//Funcionario[Salario>6000]")

Modificar valores

$xml.Empresa.Funcionarios.Funcionario[0].Salario = "8500"

Adicionar novo elemento

$novoFuncionario = $xml.CreateElement("Funcionario")

$novoFuncionario.SetAttribute("id", "3")

$nome = $xml.CreateElement("Nome")

$nome.InnerText = "Pedro Costa"

$novoFuncionario.AppendChild($nome)

$cargo = $xml.CreateElement("Cargo")

$cargo.InnerText = "Desenvolvedor"

$novoFuncionario.AppendChild($cargo)

$xml.Empresa.Funcionarios.AppendChild($novoFuncionario)

Salvar arquivo

$xml.Save("C:\temp\empresa.xml")

Ler arquivo XML

[xml]$xmlArquivo = Get-Content "C:\temp\empresa.xml"

Iterar sobre elementos

foreach ($func in $xml.Empresa.Funcionarios.Funcionario) {

 Write-Host "$($func.Nome) - $($func.Cargo) - R$ $($func.Salario)"

}

Remover elemento

$funcionarioRemover = $xml.SelectSingleNode("//Funcionario[@id='2']")

$funcionarioRemover.ParentNode.RemoveChild($funcionarioRemover)

Exemplo Completo: Gerenciador de Configuração XML

Sistema de configuração em XML

$arquivoXML = "configuracao.xml"

Criar configuração padrão

function New-ConfiguracaoXML {

 $xml = [xml]@"

<?xml version="1.0" encoding="UTF-8"?>

<Configuracao>

 <Aplicacao>

 <Nome>Sistema de Gestão</Nome>

 <Versao>2.0.0</Versao>

 <Ambiente>Desenvolvimento</Ambiente>

 </Aplicacao>

 <Conexoes>

 <Banco>

 <Servidor>localhost</Servidor>

 <Porta>1433</Porta>

 <Nome>GestaoDb</Nome>

 <Usuario>sa</Usuario>

 </Banco>

 <Email>

 <SMTP>smtp.empresa.com</SMTP>

 <Porta>587</Porta>

 <SSL>true</SSL>

 <Remetente>sistema@empresa.com</Remetente>

 </Email>

 </Conexoes>

 <Logs>

 <Nivel>Info</Nivel>

 <Caminho>C:\Logs\Sistema</Caminho>

 <TamanhoMaximoMB>100</TamanhoMaximoMB>

 </Logs>

</Configuracao>

"@

 $xml.Save($arquivoXML)

 Write-Host "Configuração XML criada: $arquivoXML" -ForegroundColor Green

}

Ler configuração

function Get-ConfiguracaoXML {

 if (Test-Path $arquivoXML) {

 [xml](Get-Content $arquivoXML)

 } else {

 Write-Host "Arquivo não encontrado. Criando novo..." -ForegroundColor Yellow

 New-ConfiguracaoXML

 [xml](Get-Content $arquivoXML)

 }

}

Obter valor específico

function Get-ValorConfig {

 param(

 [string]$XPath

)

 $xml = Get-ConfiguracaoXML

 $node = $xml.SelectSingleNode($XPath)

 if ($node) {

 $node.InnerText

 } else {

 Write-Host "Caminho não encontrado: $XPath" -ForegroundColor Red

 }

}

Definir valor

function Set-ValorConfig {

 param(

 [string]$XPath,

 [string]$Valor

)

 $xml = Get-ConfiguracaoXML

 $node = $xml.SelectSingleNode($XPath)

 if ($node) {

 $node.InnerText = $Valor

 $xml.Save($arquivoXML)

 Write-Host "Valor atualizado: $XPath = $Valor" -ForegroundColor Green

 } else {

 Write-Host "Caminho não encontrado: $XPath" -ForegroundColor Red

 }

}

Exibir configuração

function Show-ConfiguracaoXML {

 $xml = Get-ConfiguracaoXML

 Write-Host "`n=== CONFIGURAÇÃO XML ===" -ForegroundColor Cyan

 Write-Host "`n[Aplicação]" -ForegroundColor Yellow

 Write-Host " Nome: $($xml.Configuracao.Aplicacao.Nome)"

 Write-Host " Versão: $($xml.Configuracao.Aplicacao.Versao)"

 Write-Host " Ambiente: $($xml.Configuracao.Aplicacao.Ambiente)"

 Write-Host "`n[Banco de Dados]" -ForegroundColor Yellow

 Write-Host " Servidor: $($xml.Configuracao.Conexoes.Banco.Servidor)"

 Write-Host " Porta: $($xml.Configuracao.Conexoes.Banco.Porta)"

 Write-Host " Nome: $($xml.Configuracao.Conexoes.Banco.Nome)"

 Write-Host "`n[Email]" -ForegroundColor Yellow

 Write-Host " SMTP: $($xml.Configuracao.Conexoes.Email.SMTP)"

 Write-Host " Porta: $($xml.Configuracao.Conexoes.Email.Porta)"

 Write-Host " SSL: $($xml.Configuracao.Conexoes.Email.SSL)"

 Write-Host "`n[Logs]" -ForegroundColor Yellow

 Write-Host " Nível: $($xml.Configuracao.Logs.Nivel)"

 Write-Host " Caminho: $($xml.Configuracao.Logs.Caminho)"

}

Uso

New-ConfiguracaoXML

Show-ConfiguracaoXML

Get-ValorConfig -XPath "//Banco/Servidor"

Set-ValorConfig -XPath "//Banco/Porta" -Valor "1434"

3.2.4 Outros Formatos de Dados

Trabalhando com HTML

ConvertTo-Html: gera relatórios HTML

$processos = Get-Process | Select-Object -First 10 Name, Id, CPU, WorkingSet

$html = $processos | ConvertTo-Html -Title "Relatório de Processos" -PreContent
"<h1>Top 10 Processos</h1>"

$html | Out-File relatorio.html

Com CSS customizado

$css = @"

<style>

 body { font-family: Arial, sans-serif; }

 h1 { color: #2E86AB; }

 table { border-collapse: collapse; width: 100%; }

 th { background-color: #2E86AB; color: white; padding: 10px; }

 td { border: 1px solid #ddd; padding: 8px; }

 tr:nth-child(even) { background-color: #f2f2f2; }

</style>

"@

$processos | ConvertTo-Html -Head $css -Title "Relatório" -PreContent
"<h1>Processos</h1>" |

 Out-File relatorio_styled.html

Abrir no browser

Invoke-Item relatorio_styled.html

Trabalhando com Arquivos de Texto

Get-Content: ler arquivo

$conteudo = Get-Content arquivo.txt

Ler linha por linha

Get-Content arquivo.txt | ForEach-Object {

 Write-Host "Linha: $_"

}

Ler com encoding específico

Get-Content arquivo.txt -Encoding UTF8

Ler últimas N linhas

Get-Content log.txt -Tail 10

Ler e monitorar (tail -f)

Get-Content log.txt -Wait -Tail 10

Set-Content: sobrescrever arquivo

"Nova linha" | Set-Content arquivo.txt

Add-Content: adicionar ao arquivo

"Linha adicional" | Add-Content arquivo.txt

Out-File: redirecionar saída

Get-Process | Out-File processos.txt

Trabalhando com Arquivos Binários

Ler bytes de arquivo

$bytes = [System.IO.File]::ReadAllBytes("C:\arquivo.exe")

Escrever bytes

[System.IO.File]::WriteAllBytes("C:\copia.exe", $bytes)

Calcular hash

$hash = Get-FileHash "C:\arquivo.exe" -Algorithm SHA256

$hash.Hash

Conclusão da Seção 3

Nesta seção, exploramos profundamente:

1. Objetos no PowerShell: Propriedades, métodos, tipos e como explorá-los

2. Get-Member: Ferramenta essencial para descoberta

3. Criação de objetos customizados: PSCustomObject e técnicas
avançadas

4. Coleções: Arrays, ArrayLists, Hashtables e Generic Lists

5. Conversão e comparação: Type casting e Compare-Object

6. CSV: Importação, exportação e manipulação

7. JSON: Trabalho com APIs e configurações modernas

8. XML: Manipulação nativa e serialização

Com essas habilidades, você pode manipular dados em diversos formatos e criar
soluções robustas de automação e integração.

4. SCRIPTING E AUTOMAÇÃO DE TAREFAS

4.1 Criação de Scripts Simples e Avançados

4.1.1 Fundamentos de Scripts PowerShell

O que é um Script?

Um script é um arquivo contendo uma sequência de comandos PowerShell que
podem ser executados como uma unidade. Scripts permitem automatizar tarefas
repetitivas, criar ferramentas reutilizáveis e implementar lógica complexa.

Características de scripts PowerShell:

 Extensão: .ps1 (PowerShell Script)

 Podem conter cmdlets, funções, variáveis e lógica

 Suportam parâmetros de entrada

 Podem ser assinados digitalmente para segurança

 Executam no contexto do usuário atual

Estrutura Básica de um Script

Cabeçalho com informações do script

<#

.SYNOPSIS

 Breve descrição do que o script faz

.DESCRIPTION

 Descrição detalhada do script

.PARAMETER NomeParametro

 Descrição do parâmetro

.EXAMPLE

 Exemplo de uso do script

.NOTES

 Autor: Seu Nome

 Data: 15/10/2025

 Versão: 1.0

#>

Parâmetros do script

param(

 [string]$Parametro1,

 [int]$Parametro2

)

Configurações iniciais

$ErrorActionPreference = "Stop"

Corpo do script

... código aqui ...

Saída/resultado

Write-Output "Script concluído"

Criando Seu Primeiro Script

Exemplo 1: Script simples (Olá Mundo)

Arquivo: OlaMundo.ps1

Exibir mensagem

Write-Host "Olá, Mundo!" -ForegroundColor Green

Obter informações do sistema

Write-Host "`nInformações do Sistema:" -ForegroundColor Cyan

Write-Host "Computador: $env:COMPUTERNAME"

Write-Host "Usuário: $env:USERNAME"

Write-Host "Data: $(Get-Date -Format 'dd/MM/yyyy HH:mm:ss')"

Pausar antes de fechar

Read-Host "`nPressione Enter para sair"

Executar o script:

Navegar até o diretório

cd C:\Scripts

Executar

.\OlaMundo.ps1

Ou com caminho completo

C:\Scripts\OlaMundo.ps1

Exemplo 2: Script com parâmetros

Arquivo: Saudacao.ps1

param(

 [string]$Nome = "Visitante"

)

$hora = (Get-Date).Hour

if ($hora -lt 12) {

 $periodo = "Bom dia"

} elseif ($hora -lt 18) {

 $periodo = "Boa tarde"

} else {

 $periodo = "Boa noite"

}

Write-Host "$periodo, $Nome!" -ForegroundColor Green

Write-Host "Seja bem-vindo ao PowerShell!" -ForegroundColor Cyan

Executar com parâmetros:

.\Saudacao.ps1

.\Saudacao.ps1 -Nome "João"

.\Saudacao.ps1 -Nome "Maria Silva"

4.1.2 Parâmetros e Validação

Declaração de Parâmetros

Sintaxe básica

param(

 [tipo]$NomeParametro

)

Parâmetros com valores padrão

param(

 [string]$Servidor = "localhost",

 [int]$Porta = 8080,

 [bool]$SSL = $true

)

Parâmetros obrigatórios

param(

 [Parameter(Mandatory=$true)]

 [string]$Usuario,

 [Parameter(Mandatory=$true)]

 [string]$Senha

)

Parâmetros com múltiplos valores

param(

 [string[]]$Computadores,

 [int[]]$Portas

)

Parâmetros posicionais

param(

 [Parameter(Position=0, Mandatory=$true)]

 [string]$Origem,

 [Parameter(Position=1, Mandatory=$true)]

 [string]$Destino

)

Atributos de Validação

ValidateNotNullOrEmpty: não permite nulo ou vazio

param(

 [Parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$Nome

)

ValidateLength: valida tamanho da string

param(

 [ValidateLength(3, 50)]

 [string]$Usuario

)

ValidateRange: valida intervalo numérico

param(

 [ValidateRange(1, 100)]

 [int]$Porcentagem

)

ValidateSet: valida valores permitidos

param(

 [ValidateSet("Desenvolvimento", "Homologação", "Produção")]

 [string]$Ambiente

)

ValidatePattern: valida com regex

param(

 [ValidatePattern("^\d{3}\.\d{3}\.\d{3}-\d{2}$")]

 [string]$CPF

)

ValidateScript: valida com script customizado

param(

 [ValidateScript({Test-Path $_})]

 [string]$Caminho

)

ValidateCount: valida quantidade de elementos em array

param(

 [ValidateCount(1, 10)]

 [string[]]$Servidores

)

AllowNull e AllowEmptyString

param(

 [AllowNull()]

 [string]$Opcional,

 [AllowEmptyString()]

 [string]$PodeSerVazio

)

Exemplo Completo: Script com Validação

Arquivo: CriarUsuario.ps1

<#

.SYNOPSIS

 Cria um novo usuário no sistema

.DESCRIPTION

 Script para criação de usuário com validações completas

.PARAMETER Nome

 Nome completo do usuário

.PARAMETER Usuario

 Login do usuário (3-20 caracteres)

.PARAMETER Email

 Email válido do usuário

.PARAMETER Departamento

 Departamento do usuário

.EXAMPLE

 .\CriarUsuario.ps1 -Nome "João Silva" -Usuario "jsilva" -Email
"joao@empresa.com" -Departamento TI

#>

param(

 [Parameter(Mandatory=$true, HelpMessage="Digite o nome completo")]

 [ValidateNotNullOrEmpty()]

 [ValidateLength(3, 100)]

 [string]$Nome,

 [Parameter(Mandatory=$true)]

 [ValidateLength(3, 20)]

 [ValidatePattern("^[a-zA-Z0-9_-]+$")]

 [string]$Usuario,

 [Parameter(Mandatory=$true)]

 [ValidatePattern("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")]

 [string]$Email,

 [Parameter(Mandatory=$true)]

 [ValidateSet("TI", "RH", "Financeiro", "Operacional", "Comercial")]

 [string]$Departamento,

 [ValidateRange(1, 150)]

 [int]$DiasSenha = 90,

 [switch]$Ativo = $true

)

Início do script

Write-Host "`n=== CRIAÇÃO DE USUÁRIO ===" -ForegroundColor Cyan

Validações adicionais

Write-Host "`nValidando informações..." -ForegroundColor Yellow

Verificar se usuário já existe (simulação)

$usuariosExistentes = @("admin", "root", "teste")

if ($usuariosExistentes -contains $Usuario.ToLower()) {

 Write-Host "ERRO: Usuário '$Usuario' já existe!" -ForegroundColor Red

 exit 1

}

Criar objeto de usuário

$novoUsuario = [PSCustomObject]@{

 Nome = $Nome

 Usuario = $Usuario

 Email = $Email

 Departamento = $Departamento

 DataCriacao = Get-Date

 DiasSenha = $DiasSenha

 Ativo = $Ativo

 ID = (Get-Random -Minimum 1000 -Maximum 9999)

}

Exibir resumo

Write-Host "`nResumo do Usuário:" -ForegroundColor Green

$novoUsuario | Format-List

Confirmação

$confirmacao = Read-Host "`nConfirma a criação do usuário? (S/N)"

if ($confirmacao -eq 'S' -or $confirmacao -eq 's') {

 Write-Host "Usuário criado com sucesso!" -ForegroundColor Green

 # Salvar em arquivo (simulação)

 $novoUsuario | Export-Csv "usuarios.csv" -Append -NoTypeInformation

 # Log

 $logEntry = "$(Get-Date -Format 'yyyy-MM-dd HH:mm:ss') - Usuário $Usuario
criado"

 $logEntry | Out-File "usuarios.log" -Append

} else {

 Write-Host "Operação cancelada." -ForegroundColor Yellow

}

4.1.3 Funções em Scripts

Criando Funções

Sintaxe básica

function Get-MeuDado {

 # código da função

}

Função com parâmetros

function Get-Saudacao {

 param(

 [string]$Nome

)

 return "Olá, $Nome!"

}

Função avançada (com cmdlet binding)

function Get-InformacaoServidor {

 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$true, ValueFromPipeline=$true)]

 [string]$ComputerName

)

 begin {

 Write-Verbose "Iniciando coleta de informações"

 }

 process {

 try {

 $os = Get-CimInstance -ClassName Win32_OperatingSystem -
ComputerName $ComputerName

 [PSCustomObject]@{

 Computador = $ComputerName

 SO = $os.Caption

 Versao = $os.Version

 Arquitetura = $os.OSArchitecture

 MemoriaGB = [math]::Round($os.TotalVisibleMemorySize / 1MB, 2)

 }

 }

 catch {

 Write-Error "Erro ao coletar dados de $ComputerName : $_"

 }

 }

 end {

 Write-Verbose "Coleta finalizada"

 }

}

Usar a função

Get-InformacaoServidor -ComputerName "localhost" -Verbose

Escopo de Funções

Função em escopo de script

function Script:MinhaFuncao {

 Write-Host "Função de script"

}

Função em escopo global

function Global:OutraFuncao {

 Write-Host "Função global"

}

Função privada (não exportada de módulos)

function Private:FuncaoPrivada {

 Write-Host "Função privada"

}

Exemplo Completo: Biblioteca de Funções

Arquivo: BibliotecaUtils.ps1

<#

.SYNOPSIS

 Biblioteca de funções utilitárias

#>

Função para validar email

function Test-Email {

 <#

 .SYNOPSIS

 Valida formato de email

 .PARAMETER Email

 Email a ser validado

 .EXAMPLE

 Test-Email -Email "usuario@dominio.com"

 #>

 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$true)]

 [string]$Email

)

 $pattern = "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"

 return $Email -match $pattern

}

Função para obter tamanho de diretório

function Get-DirectorySize {

 <#

 .SYNOPSIS

 Calcula tamanho total de um diretório

 .PARAMETER Path

 Caminho do diretório

 .EXAMPLE

 Get-DirectorySize -Path "C:\Logs"

 #>

 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path

)

 $size = (Get-ChildItem -Path $Path -Recurse -File |

 Measure-Object -Property Length -Sum).Sum

 [PSCustomObject]@{

 Caminho = $Path

 TotalBytes = $size

 TotalMB = [math]::Round($size / 1MB, 2)

 TotalGB = [math]::Round($size / 1GB, 2)

 }

}

Função para criar backup

function New-Backup {

 <#

 .SYNOPSIS

 Cria backup compactado de um diretório

 .PARAMETER Source

 Diretório de origem

 .PARAMETER Destination

 Diretório de destino

 .EXAMPLE

 New-Backup -Source "C:\Dados" -Destination "D:\Backups"

 #>

 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Source,

 [Parameter(Mandatory=$true)]

 [string]$Destination

)

 # Criar diretório de destino se não existir

 if (-not (Test-Path $Destination)) {

 New-Item -Path $Destination -ItemType Directory | Out-Null

 }

 # Nome do arquivo de backup

 $timestamp = Get-Date -Format "yyyyMMdd_HHmmss"

 $backupName = "Backup_$timestamp.zip"

 $backupPath = Join-Path $Destination $backupName

 Write-Host "Criando backup: $backupPath" -ForegroundColor Yellow

 try {

 # Criar arquivo ZIP

 Compress-Archive -Path $Source -DestinationPath $backupPath -
CompressionLevel Optimal

 $fileInfo = Get-Item $backupPath

 Write-Host "Backup criado com sucesso!" -ForegroundColor Green

 Write-Host "Tamanho: $([math]::Round($fileInfo.Length / 1MB, 2)) MB" -
ForegroundColor Cyan

 return [PSCustomObject]@{

 Sucesso = $true

 ArquivoBackup = $backupPath

 Tamanho = $fileInfo.Length

 DataCriacao = $fileInfo.CreationTime

 }

 }

 catch {

 Write-Host "Erro ao criar backup: $_" -ForegroundColor Red

 return [PSCustomObject]@{

 Sucesso = $false

 Erro = $_.Exception.Message

 }

 }

}

Função para limpeza de arquivos antigos

function Remove-OldFiles {

 <#

 .SYNOPSIS

 Remove arquivos mais antigos que X dias

 .PARAMETER Path

 Diretório a ser limpo

 .PARAMETER Days

 Arquivos mais antigos que esta quantidade de dias serão removidos

 .PARAMETER WhatIf

 Simula a operação sem executar

 .EXAMPLE

 Remove-OldFiles -Path "C:\Logs" -Days 30

 #>

 [CmdletBinding(SupportsShouldProcess=$true)]

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path,

 [Parameter(Mandatory=$true)]

 [ValidateRange(1, 365)]

 [int]$Days

)

 $dataLimite = (Get-Date).AddDays(-$Days)

 Write-Host "`nBuscando arquivos anteriores a:
$($dataLimite.ToString('dd/MM/yyyy'))" -ForegroundColor Yellow

 $arquivosAntigos = Get-ChildItem -Path $Path -File -Recurse |

 Where-Object { $_.LastWriteTime -lt $dataLimite }

 if ($arquivosAntigos.Count -eq 0) {

 Write-Host "Nenhum arquivo antigo encontrado." -ForegroundColor Green

 return

 }

 Write-Host "Encontrados $($arquivosAntigos.Count) arquivos antigos" -
ForegroundColor Cyan

 $tamanhoTotal = ($arquivosAntigos | Measure-Object -Property Length -
Sum).Sum

 Write-Host "Espaço a ser liberado: $([math]::Round($tamanhoTotal / 1MB, 2))
MB" -ForegroundColor Cyan

 $removidos = 0

 foreach ($arquivo in $arquivosAntigos) {

 if ($PSCmdlet.ShouldProcess($arquivo.FullName, "Remover arquivo")) {

 try {

 Remove-Item -Path $arquivo.FullName -Force

 $removidos++

 Write-Verbose "Removido: $($arquivo.Name)"

 }

 catch {

 Write-Warning "Erro ao remover $($arquivo.Name): $_"

 }

 }

 }

 Write-Host "`n$removidos arquivos removidos com sucesso!" -ForegroundColor
Green

}

Função para monitorar uso de disco

function Get-DiskUsage {

 <#

 .SYNOPSIS

 Retorna uso de disco com alertas

 .PARAMETER ThresholdPercent

 Percentual de alerta

 .EXAMPLE

 Get-DiskUsage -ThresholdPercent 80

 #>

 [CmdletBinding()]

 param(

 [ValidateRange(1, 100)]

 [int]$ThresholdPercent = 80

)

 $discos = Get-CimInstance -ClassName Win32_LogicalDisk -Filter "DriveType=3"

 foreach ($disco in $discos) {

 $percentualUsado = [math]::Round((($disco.Size - $disco.FreeSpace) /
$disco.Size) * 100, 2)

 $status = if ($percentualUsado -ge $ThresholdPercent) { " ALERTA" } else {

"脥� OK" }

 [PSCustomObject]@{

 Disco = $disco.DeviceID

 TamanhoGB = [math]::Round($disco.Size / 1GB, 2)

 LivreGB = [math]::Round($disco.FreeSpace / 1GB, 2)

 UsadoGB = [math]::Round(($disco.Size - $disco.FreeSpace) / 1GB, 2)

 PercentualUsado = $percentualUsado

 Status = $status

 }

 }

}

Exportar funções (se usado como módulo)

Export-ModuleMember -Function Test-Email, Get-DirectorySize, New-Backup,
Remove-OldFiles, Get-DiskUsage

Usar a biblioteca:

Dot source (carregar funções no escopo atual)

. .\BibliotecaUtils.ps1

Usar funções

Test-Email -Email "usuario@exemplo.com"

Get-DirectorySize -Path "C:\Logs"

New-Backup -Source "C:\Dados" -Destination "D:\Backups"

Remove-OldFiles -Path "C:\Logs" -Days 30 -WhatIf

Get-DiskUsage -ThresholdPercent 75

4.1.4 Tratamento de Erros

Try-Catch-Finally

Estrutura básica

try {

 # Código que pode gerar erro

 Get-Item "C:\ArquivoInexistente.txt" -ErrorAction Stop

}

catch {

 # Tratar erro

 Write-Host "Erro capturado: $($_.Exception.Message)" -ForegroundColor Red

}

finally {

 # Sempre executado (opcional)

 Write-Host "Bloco finally executado"

}

Múltiplos catches (tipos específicos)

try {

 $resultado = 10 / 0

}

catch [System.DivideByZeroException] {

 Write-Host "Erro: Divisão por zero"

}

catch [System.IO.FileNotFoundException] {

 Write-Host "Erro: Arquivo não encontrado"

}

catch {

 Write-Host "Erro genérico: $_"

}

Variável automática $_ ou $PSItem

try {

 Get-Content "arquivo_inexistente.txt" -ErrorAction Stop

}

catch {

 Write-Host "Mensagem: $($_.Exception.Message)"

 Write-Host "Tipo: $($_.Exception.GetType().FullName)"

 Write-Host "Linha: $($_.InvocationInfo.ScriptLineNumber)"

 Write-Host "Comando: $($_.InvocationInfo.Line)"

}

ErrorAction e ErrorActionPreference

ErrorActionPreference (escopo do script)

$ErrorActionPreference = "Stop" # Trata erros como terminantes

$ErrorActionPreference = "Continue" # Padrão - exibe erro e continua

$ErrorActionPreference = "SilentlyContinue" # Suprime erro

$ErrorActionPreference = "Inquire" # Pergunta ao usuário

ErrorAction (por comando)

Get-Item "arquivo.txt" -ErrorAction Stop

Get-Item "arquivo.txt" -ErrorAction SilentlyContinue

Get-Item "arquivo.txt" -ErrorAction Ignore

Capturar erro em variável

Get-Item "arquivo.txt" -ErrorAction SilentlyContinue -ErrorVariable meuErro

if ($meuErro) {

 Write-Host "Erro ocorreu: $meuErro"

}

Variável automática $Error

$Error[0] # Último erro

$Error.Count # Quantidade de erros

$Error.Clear() # Limpar histórico de erros

Throw - Gerar Erros

Throw simples

throw "Erro customizado"

Throw com tipo

throw [System.ArgumentException]::new("Parâmetro inválido")

Throw condicional

function Divide-Numero {

 param([int]$Numero, [int]$Divisor)

 if ($Divisor -eq 0) {

 throw "Divisor não pode ser zero"

 }

 return $Numero / $Divisor

}

try {

 Divide-Numero -Numero 10 -Divisor 0

}

catch {

 Write-Host "Erro: $_" -ForegroundColor Red

}

Exemplo Completo: Script com Tratamento Robusto de Erros

Arquivo: ProcessarArquivos.ps1

<#

.SYNOPSIS

 Processa arquivos com tratamento robusto de erros

#>

param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$OrigemPath,

 [Parameter(Mandatory=$true)]

 [string]$DestinoPath,

 [switch]$ContinueOnError

)

Configuração de erro

$ErrorActionPreference = if ($ContinueOnError) { "Continue" } else { "Stop" }

Contador de resultados

$script:sucessos = 0

$script:falhas = 0

$script:erros = @()

Função para registrar erro

function Write-ErrorLog {

 param(

 [string]$Arquivo,

 [string]$Mensagem

)

 $script:falhas++

 $erro = [PSCustomObject]@{

 Timestamp = Get-Date

 Arquivo = $Arquivo

 Erro = $Mensagem

 }

 $script:erros += $erro

 Write-Host "ERRO: $Arquivo - $Mensagem" -ForegroundColor Red

}

Função para processar arquivo

function Process-File {

 param([System.IO.FileInfo]$Arquivo)

 try {

 Write-Verbose "Processando: $($Arquivo.Name)"

 # Validar se arquivo não está em uso

 try {

 $stream = [System.IO.File]::Open($Arquivo.FullName, 'Open', 'Read', 'None')

 $stream.Close()

 $stream.Dispose()

 }

 catch {

 throw "Arquivo em uso por outro processo"

 }

 # Validar tamanho

 if ($Arquivo.Length -eq 0) {

 throw "Arquivo vazio"

 }

 # Criar diretório de destino

 if (-not (Test-Path $DestinoPath)) {

 New-Item -Path $DestinoPath -ItemType Directory -Force | Out-Null

 }

 # Copiar arquivo

 $destino = Join-Path $DestinoPath $Arquivo.Name

 Copy-Item -Path $Arquivo.FullName -Destination $destino -Force -ErrorAction
Stop

 # Validar cópia

 $arquivoDestino = Get-Item $destino

 if ($arquivoDestino.Length -ne $Arquivo.Length) {

 throw "Tamanho do arquivo de destino difere do original"

 }

 $script:sucessos++

 Write-Host "✓ $($Arquivo.Name) processado com sucesso" -ForegroundColor
Green

 return $true

 }

 catch {

 Write-ErrorLog -Arquivo $Arquivo.Name -Mensagem $_.Exception.Message

 return $false

 }

}

Início do processamento

Write-Host "`n=== PROCESSAMENTO DE ARQUIVOS ===" -ForegroundColor Cyan

Write-Host "Origem: $OrigemPath" -ForegroundColor Yellow

Write-Host "Destino: $DestinoPath" -ForegroundColor Yellow

try {

 # Obter arquivos

 Write-Host "`nBuscando arquivos..." -ForegroundColor Yellow

 $arquivos = Get-ChildItem -Path $OrigemPath -File -ErrorAction Stop

 if ($arquivos.Count -eq 0) {

 Write-Host "Nenhum arquivo encontrado no diretório de origem." -
ForegroundColor Yellow

 exit 0

 }

 Write-Host "Encontrados $($arquivos.Count) arquivos" -ForegroundColor Cyan

 # Processar cada arquivo

 Write-Host "`nProcessando arquivos..." -ForegroundColor Yellow

 foreach ($arquivo in $arquivos) {

 $resultado = Process-File -Arquivo $arquivo

 # Se não for para continuar em erro e houve falha, parar

 if (-not $ContinueOnError -and -not $resultado) {

 throw "Processamento interrompido devido a erro"

 }

 }

}

catch {

 Write-Host "`nERRO CRÍTICO: $($_.Exception.Message)" -ForegroundColor Red

 Write-Host "StackTrace: $($_.ScriptStackTrace)" -ForegroundColor DarkRed

 exit 1

}

finally {

 # Relatório final

 Write-Host "`n=== RESULTADO DO PROCESSAMENTO ===" -ForegroundColor
Cyan

 Write-Host "Total de arquivos: $($arquivos.Count)" -ForegroundColor White

 Write-Host "Sucessos: $script:sucessos" -ForegroundColor Green

 Write-Host "Falhas: $script:falhas" -ForegroundColor Red

 # Salvar log de erros se houver

 if ($script:erros.Count -gt 0) {

 $logPath = "ProcessamentoErros_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv"

 $script:erros | Export-Csv $logPath -NoTypeInformation

 Write-Host "`nLog de erros salvo em: $logPath" -ForegroundColor Yellow

 }

 # Status de saída

 if ($script:falhas -eq 0) {

 Write-Host "`nProcessamento concluído com sucesso!" -ForegroundColor
Green

 exit 0

 } else {

 Write-Host "`nProcessamento concluído com erros." -ForegroundColor Yellow

 exit 1

 }

}

4.1.5 Logging e Debugging

Write-Host vs Write-Output vs Write-Verbose

Write-Host: saída visual (não vai para pipeline)

Write-Host "Mensagem para o usuário" -ForegroundColor Green

Write-Output: saída para pipeline

Write-Output "Dados para processamento"

Write-Verbose: mensagens detalhadas (precisa -Verbose)

Write-Verbose "Informação de debug"

Write-Warning: avisos

Write-Warning "Isso pode causar problemas"

Write-Error: erros não terminantes

Write-Error "Ocorreu um erro"

Write-Information: informações (PS 5.0+)

Write-Information "Informação importante" -InformationAction Continue

Write-Debug: mensagens de debug

Write-Debug "Valor da variável: $valor"

Sistema de Logging Completo

Arquivo: LoggingSystem.ps1

Enum para níveis de log

enum LogLevel {

 DEBUG = 0

 INFO = 1

 WARNING = 2

 ERROR = 3

 CRITICAL = 4

}

Configuração de logging

$script:LogConfig = @{

 LogPath = ".\logs"

 LogFile = "aplicacao_$(Get-Date -Format 'yyyyMMdd').log"

 MinLevel = [LogLevel]::INFO

 ConsoleOutput = $true

 FileOutput = $true

}

Função principal de logging

function Write-Log {

 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$true)]

 [string]$Message,

 [LogLevel]$Level = [LogLevel]::INFO,

 [string]$Source = "SYSTEM"

)

 # Verificar nível mínimo

 if ($Level -lt $script:LogConfig.MinLevel) {

 return

 }

 # Formato da mensagem

 $timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss.Ưf"

 $logEntry = "[$timestamp] [$Level] [$Source] $Message"

 # Saída no console

 if ($script:LogConfig.ConsoleOutput) {

 $color = switch ($Level) {

 ([LogLevel]::DEBUG) { "Gray" }

 ([LogLevel]::INFO) { "White" }

 ([LogLevel]::WARNING) { "Yellow" }

 ([LogLevel]::ERROR) { "Red" }

 ([LogLevel]::CRITICAL) { "Magenta" }

 }

 Write-Host $logEntry -ForegroundColor $color

 }

 # Saída em arquivo

 if ($script:LogConfig.FileOutput) {

 # Criar diretório se não existir

 if (-not (Test-Path $script:LogConfig.LogPath)) {

 New-Item -Path $script:LogConfig.LogPath -ItemType Directory -Force | Out-
Null

 }

 $logFilePath = Join-Path $script:LogConfig.LogPath $script:LogConfig.LogFile

 $logEntry | Out-File -FilePath $logFilePath -Append -Encoding UTF8

 }

}

Funções auxiliares

function Write-LogDebug {

 param([string]$Message, [string]$Source = "DEBUG")

 Write-Log -Message $Message -Level ([LogLevel]::DEBUG) -Source $Source

}

function Write-LogInfo {

 param([string]$Message, [string]$Source = "INFO")

 Write-Log -Message $Message -Level ([LogLevel]::INFO) -Source $Source

}

function Write-LogWarning {

 param([string]$Message, [string]$Source = "WARNING")

 Write-Log -Message $Message -Level ([LogLevel]::WARNING) -Source $Source

}

function Write-LogError {

 param([string]$Message, [string]$Source = "ERROR")

 Write-Log -Message $Message -Level ([LogLevel]::ERROR) -Source $Source

}

function Write-LogCritical {

 param([string]$Message, [string]$Source = "CRITICAL")

 Write-Log -Message $Message -Level ([LogLevel]::CRITICAL) -Source $Source

}

Função para configurar logging

function Set-LogConfiguration {

 param(

 [string]$LogPath,

 [LogLevel]$MinLevel,

 [bool]$ConsoleOutput,

 [bool]$FileOutput

)

 if ($LogPath) { $script:LogConfig.LogPath = $LogPath }

 if ($MinLevel) { $script:LogConfig.MinLevel = $MinLevel }

 if ($PSBoundParameters.ContainsKey('ConsoleOutput')) {

 $script:LogConfig.ConsoleOutput = $ConsoleOutput

 }

 if ($PSBoundParameters.ContainsKey('FileOutput')) {

 $script:LogConfig.FileOutput = $FileOutput

 }

}

Função para limpar logs antigos

function Clear-OldLogs {

 param(

 [int]$DaysToKeep = 30

)

 $dataLimite = (Get-Date).AddDays(-$DaysToKeep)

 $arquivosAntigos = Get-ChildItem -Path $script:LogConfig.LogPath -Filter "*.log"
|

 Where-Object { $_.LastWriteTime -lt $dataLimite }

 foreach ($arquivo in $arquivosAntigos) {

 Remove-Item -Path $arquivo.FullName -Force

 Write-LogInfo "Log antigo removido: $($arquivo.Name)"

 }

}

Exemplo de uso

Write-LogInfo "Aplicação iniciada"

Write-LogDebug "Variável X = 10"

Write-LogWarning "Conexão lenta detectada"

Write-LogError "Falha ao conectar ao servidor"

Write-LogCritical "Sistema de pagamento indisponível"

Debugging com Set-PSDebug

Ativar debug (mostra cada linha executada)

Set-PSDebug -Trace 1

Nível de trace mais detalhado

Set-PSDebug -Trace 2

Strict mode (variáveis não inicializadas geram erro)

Set-PSDebug -Strict

Desativar debug

Set-PSDebug -OƯ

Exemplo

Set-PSDebug -Trace 1

$nome = "João"

Write-Host "Olá, $nome"

Set-PSDebug -OƯ

Breakpoints e Debugging Interativo

Definir breakpoint em linha específica

Set-PSBreakpoint -Script "MeuScript.ps1" -Line 10

Breakpoint em variável (quando modificada)

Set-PSBreakpoint -Script "MeuScript.ps1" -Variable "contador"

Breakpoint em comando

Set-PSBreakpoint -Script "MeuScript.ps1" -Command "Get-Process"

Listar breakpoints

Get-PSBreakpoint

Remover breakpoint

Remove-PSBreakpoint -Id 1

Remover todos

Get-PSBreakpoint | Remove-PSBreakpoint

No VS Code:

- F9: Toggle breakpoint

- F5: Iniciar debug

- F10: Step Over

- F11: Step Into

- Shift+F11: Step Out

4.1.6 Scripts Avançados - Exemplos Práticos

Exemplo 1: Script de Monitoramento de Servidor

Arquivo: MonitorServidor.ps1

<#

.SYNOPSIS

 Monitora recursos do servidor e gera alertas

.DESCRIPTION

 Script completo de monitoramento com múltiplas verificações

.PARAMETER ComputerName

 Nome do servidor a monitorar

.PARAMETER AlertEmail

 Email para envio de alertas

.PARAMETER CPUThreshold

 Limite de uso de CPU (%)

.PARAMETER MemoryThreshold

 Limite de uso de memória (%)

.PARAMETER DiskThreshold

 Limite de uso de disco (%)

.EXAMPLE

 .\MonitorServidor.ps1 -ComputerName "SERVER01" -AlertEmail
"admin@empresa.com"

#>

[CmdletBinding()]

param(

 [Parameter(Mandatory=$false)]

 [string]$ComputerName = $env:COMPUTERNAME,

 [Parameter(Mandatory=$false)]

 [ValidatePattern("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")]

 [string]$AlertEmail,

 [ValidateRange(1, 100)]

 [int]$CPUThreshold = 80,

 [ValidateRange(1, 100)]

 [int]$MemoryThreshold = 85,

 [ValidateRange(1, 100)]

 [int]$DiskThreshold = 90,

 [switch]$ContinuousMonitoring,

 [int]$IntervalSeconds = 60

)

Configurar logging

$logPath = ".\MonitorLogs"

if (-not (Test-Path $logPath)) {

 New-Item -Path $logPath -ItemType Directory | Out-Null

}

$logFile = Join-Path $logPath "Monitor_$(Get-Date -Format 'yyyyMMdd').log"

function Write-MonitorLog {

 param(

 [string]$Message,

 [string]$Level = "INFO"

)

 $timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"

 $logEntry = "[$timestamp] [$Level] $Message"

 $color = switch ($Level) {

 "INFO" { "White" }

 "WARNING" { "Yellow" }

 "ERROR" { "Red" }

 "ALERT" { "Magenta" }

 default { "Gray" }

 }

 Write-Host $logEntry -ForegroundColor $color

 $logEntry | Out-File -FilePath $logFile -Append -Encoding UTF8

}

function Get-CPUUsage {

 try {

 $cpu = Get-CimInstance -ClassName Win32_Processor -ComputerName
$ComputerName

 $usage = $cpu.LoadPercentage

 return [PSCustomObject]@{

 Metric = "CPU"

 Value = $usage

 Threshold = $CPUThreshold

 Status = if ($usage -ge $CPUThreshold) { "ALERT" } else { "OK" }

 Message = "Uso de CPU: $usage%"

 }

 }

 catch {

 Write-MonitorLog "Erro ao obter uso de CPU: $_" -Level "ERROR"

 return $null

 }

}

function Get-MemoryUsage {

 try {

 $os = Get-CimInstance -ClassName Win32_OperatingSystem -
ComputerName $ComputerName

 $totalMemory = $os.TotalVisibleMemorySize

 $freeMemory = $os.FreePhysicalMemory

 $usedPercent = [math]::Round((($totalMemory - $freeMemory) /
$totalMemory) * 100, 2)

 return [PSCustomObject]@{

 Metric = "Memory"

 Value = $usedPercent

 Threshold = $MemoryThreshold

 Status = if ($usedPercent -ge $MemoryThreshold) { "ALERT" } else { "OK" }

 Message = "Uso de Memória: $usedPercent% (Livre:
$([math]::Round($freeMemory/1MB, 2)) GB)"

 }

 }

 catch {

 Write-MonitorLog "Erro ao obter uso de memória: $_" -Level "ERROR"

 return $null

 }

}

function Get-DiskUsage {

 try {

 $discos = Get-CimInstance -ClassName Win32_LogicalDisk -Filter
"DriveType=3" -ComputerName $ComputerName

 $resultados = @()

 foreach ($disco in $discos) {

 $usedPercent = [math]::Round((($disco.Size - $disco.FreeSpace) /
$disco.Size) * 100, 2)

 $resultados += [PSCustomObject]@{

 Metric = "Disk $($disco.DeviceID)"

 Value = $usedPercent

 Threshold = $DiskThreshold

 Status = if ($usedPercent -ge $DiskThreshold) { "ALERT" } else { "OK" }

 Message = "Disco $($disco.DeviceID): $usedPercent% usado (Livre:
$([math]::Round($disco.FreeSpace/1GB, 2)) GB)"

 }

 }

 return $resultados

 }

 catch {

 Write-MonitorLog "Erro ao obter uso de disco: $_" -Level "ERROR"

 return $null

 }

}

function Get-ServiceStatus {

 try {

 $servicosCriticos = @("wuauserv", "BITS", "EventLog", "WinRM")

 $resultados = @()

 foreach ($servico in $servicosCriticos) {

 $svc = Get-Service -Name $servico -ComputerName $ComputerName -
ErrorAction SilentlyContinue

 if ($svc) {

 $resultados += [PSCustomObject]@{

 Metric = "Service $servico"

 Value = $svc.Status

 Threshold = "Running"

 Status = if ($svc.Status -ne "Running") { "ALERT" } else { "OK" }

 Message = "Serviço $($svc.DisplayName): $($svc.Status)"

 }

 }

 }

 return $resultados

 }

 catch {

 Write-MonitorLog "Erro ao verificar serviços: $_" -Level "ERROR"

 return $null

 }

}

function Send-AlertEmail {

 param(

 [array]$Alerts

)

 if (-not $AlertEmail) {

 return

 }

 try {

 $body = "ALERTAS DE MONITORAMENTO - $ComputerName`n`n"

 $body += "Data/Hora: $(Get-Date -Format 'dd/MM/yyyy HH:mm:ss')`n`n"

 $body += "Alertas:`n"

 foreach ($alert in $Alerts) {

 $body += "- $($alert.Message)`n"

 }

 # Configurar parâmetros de email (ajustar conforme sua infraestrutura)

 $emailParams = @{

 From = "monitor@empresa.com"

 To = $AlertEmail

 Subject = "ALERTA: $ComputerName - $(Get-Date -Format 'dd/MM/yyyy
HH:mm:ss')"

 Body = $body

 SmtpServer = "smtp.empresa.com"

 }

 Send-MailMessage @emailParams

 Write-MonitorLog "Email de alerta enviado para $AlertEmail" -Level "INFO"

 }

 catch {

 Write-MonitorLog "Erro ao enviar email: $_" -Level "ERROR"

 }

}

function Start-Monitoring {

 Write-MonitorLog "===== MONITORAMENTO INICIADO =====" -Level "INFO"

 Write-MonitorLog "Servidor: $ComputerName" -Level "INFO"

 Write-MonitorLog "Limites: CPU=$CPUThreshold%,
Memória=$MemoryThreshold%, Disco=$DiskThreshold%" -Level "INFO"

 do {

 Write-MonitorLog "`n----- Nova Verificação -----" -Level "INFO"

 $todasMetricas = @()

 $alertas = @()

 # Coletar métricas

 $cpu = Get-CPUUsage

 if ($cpu) {

 $todasMetricas += $cpu

 if ($cpu.Status -eq "ALERT") { $alertas += $cpu }

 }

 $memoria = Get-MemoryUsage

 if ($memoria) {

 $todasMetricas += $memoria

 if ($memoria.Status -eq "ALERT") { $alertas += $memoria }

 }

 $discos = Get-DiskUsage

 if ($discos) {

 $todasMetricas += $discos

 $alertas += $discos | Where-Object Status -eq "ALERT"

 }

 $servicos = Get-ServiceStatus

 if ($servicos) {

 $todasMetricas += $servicos

 $alertas += $servicos | Where-Object Status -eq "ALERT"

 }

 # Exibir resultados

 foreach ($metrica in $todasMetricas) {

 $level = if ($metrica.Status -eq "ALERT") { "ALERT" } else { "INFO" }

 Write-MonitorLog $metrica.Message -Level $level

 }

 # Enviar alertas se houver

 if ($alertas.Count -gt 0) {

 Write-MonitorLog "`n!!! $($alertas.Count) ALERTA(S) DETECTADO(S) !!!" -
Level "ALERT"

 Send-AlertEmail -Alerts $alertas

 }

 # Salvar relatório

 $relatorioPath = Join-Path $logPath "Relatorio_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv"

 $todasMetricas | Export-Csv -Path $relatorioPath -NoTypeInformation

 if ($ContinuousMonitoring) {

 Write-MonitorLog "`nPróxima verificação em $IntervalSeconds segundos..." -
Level "INFO"

 Start-Sleep -Seconds $IntervalSeconds

 }

 } while ($ContinuousMonitoring)

 Write-MonitorLog "`n===== MONITORAMENTO ENCERRADO =====" -Level
"INFO"

}

Executar monitoramento

try {

 Start-Monitoring

}

catch {

 Write-MonitorLog "ERRO CRÍTICO: $($_.Exception.Message)" -Level "ERROR"

 Write-MonitorLog "StackTrace: $($_.ScriptStackTrace)" -Level "ERROR"

 exit 1

}

Uso do script:

Monitoramento único

.\MonitorServidor.ps1 -ComputerName "SERVER01"

Monitoramento contínuo

.\MonitorServidor.ps1 -ContinuousMonitoring -IntervalSeconds 300

Com alertas por email

.\MonitorServidor.ps1 -AlertEmail "admin@empresa.com" -CPUThreshold 75

Monitoramento contínuo com alertas

.\MonitorServidor.ps1 -ContinuousMonitoring -IntervalSeconds 60 -AlertEmail
"admin@empresa.com"

4.2 Gerenciamento de Tarefas Agendadas

4.2.1 Introdução às Tarefas Agendadas

O que são Tarefas Agendadas?

Tarefas agendadas (Scheduled Tasks) permitem executar scripts, programas ou
comandos automaticamente em horários específicos ou em resposta a eventos
do sistema.

Casos de uso comuns:

 Backups automáticos

 Limpeza de arquivos temporários

 Coleta de métricas de sistema

 Sincronização de dados

 Envio de relatórios

 Manutenção de sistemas

 Monitoramento contínuo

Componentes principais:

 Trigger (Gatilho): Quando a tarefa deve executar

 Action (Ação): O que a tarefa deve fazer

 Conditions (Condições): Requisitos para execução

 Settings (Configurações): Comportamento da tarefa

4.2.2 Cmdlets para Gerenciamento de Tarefas

PowerShell oferece cmdlets nativos para gerenciar tarefas agendadas:

Cmdlets principais

Get-ScheduledTask # Listar tarefas

New-ScheduledTask # Criar nova tarefa

Register-ScheduledTask # Registrar tarefa no sistema

Set-ScheduledTask # Modificar tarefa existente

Unregister-ScheduledTask # Remover tarefa

Start-ScheduledTask # Executar tarefa manualmente

Stop-ScheduledTask # Parar execução

Enable-ScheduledTask # Habilitar tarefa

Disable-ScheduledTask # Desabilitar tarefa

Get-ScheduledTaskInfo # Informações de execução

Listar Tarefas Agendadas

Listar todas as tarefas

Get-ScheduledTask

Listar tarefas ativas

Get-ScheduledTask | Where-Object State -eq 'Ready'

Listar tarefas desabilitadas

Get-ScheduledTask | Where-Object State -eq 'Disabled'

Buscar tarefa específica

Get-ScheduledTask -TaskName "MinhaTask"

Listar tarefas em pasta específica

Get-ScheduledTask -TaskPath "\Microsoft\Windows\WindowsUpdate\"

Detalhes de uma tarefa

$task = Get-ScheduledTask -TaskName "MinhaTask"

$task | Format-List *

Informações de última execução

Get-ScheduledTaskInfo -TaskName "MinhaTask"

Filtrar tarefas

Get-ScheduledTask | Where-Object {

 $_.TaskName -like "*Backup*" -and

 $_.State -eq 'Ready'

} | Select-Object TaskName, State, TaskPath

4.2.3 Criando Tarefas Agendadas

Componentes de uma Tarefa

1. ACTION - O que executar

$action = New-ScheduledTaskAction

2. TRIGGER - Quando executar

$trigger = New-ScheduledTaskTrigger

3. PRINCIPAL - Com quais credenciais

$principal = New-ScheduledTaskPrincipal

4. SETTINGS - Configurações adicionais

$settings = New-ScheduledTaskSettingsSet

5. REGISTRAR a tarefa

Register-ScheduledTask

Exemplo 1: Tarefa Simples - Executar Script Diariamente

Definir ação: executar script PowerShell

$action = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-NoProfile -ExecutionPolicy Bypass -File C:\Scripts\Backup.ps1"

Definir trigger: diariamente às 22:00

$trigger = New-ScheduledTaskTrigger -Daily -At "22:00"

Definir configurações

$settings = New-ScheduledTaskSettingsSet `

 -AllowStartIfOnBatteries `

 -DontStopIfGoingOnBatteries `

 -StartWhenAvailable

Registrar tarefa

Register-ScheduledTask `

 -TaskName "Backup Diário" `

 -Description "Executa backup diário dos dados" `

 -Action $action `

 -Trigger $trigger `

 -Settings $settings `

 -User "SYSTEM"

Write-Host "Tarefa criada com sucesso!"

Exemplo 2: Múltiplos Triggers

Ação

$action = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-File C:\Scripts\Monitor.ps1"

Múltiplos triggers

$trigger1 = New-ScheduledTaskTrigger -AtStartup

$trigger2 = New-ScheduledTaskTrigger -Daily -At "08:00"

$trigger3 = New-ScheduledTaskTrigger -Daily -At "18:00"

Registrar com múltiplos triggers

Register-ScheduledTask `

 -TaskName "Monitoramento Sistema" `

 -Action $action `

 -Trigger $trigger1, $trigger2, $trigger3 `

 -User "SYSTEM"

Exemplo 3: Trigger por Evento

Criar trigger baseado em evento do log

$trigger = New-ScheduledTaskTrigger `

 -AtLogOn

Ou trigger por evento específico

$eventFilter = @"

<QueryList>

 <Query Id="0" Path="System">

 <Select Path="System">

 *[System[Provider[@Name='Microsoft-Windows-Power-Troubleshooter'] and
(EventID=1)]]

 </Select>

 </Query>

</QueryList>

"@

Criar CIM instance para trigger de evento

$class = Get-CimClass -ClassName MSFT_TaskEventTrigger -Namespace
Root/Microsoft/Windows/TaskScheduler

$trigger = New-CimInstance -CimClass $class -ClientOnly

$trigger.Subscription = $eventFilter

$trigger.Enabled = $true

Ação

$action = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-File C:\Scripts\TratarEvento.ps1"

Registrar

Register-ScheduledTask `

 -TaskName "Responder Evento Sistema" `

 -Action $action `

 -Trigger $trigger

4.2.4 Tipos de Triggers

Trigger único (uma vez)

$trigger = New-ScheduledTaskTrigger -Once -At "2025-12-31 23:59"

Trigger diário

$trigger = New-ScheduledTaskTrigger -Daily -At "03:00"

Trigger semanal (múltiplos dias)

$trigger = New-ScheduledTaskTrigger -Weekly -DaysOfWeek Monday, Wednesday,
Friday -At "18:00"

Trigger na inicialização

$trigger = New-ScheduledTaskTrigger -AtStartup

Trigger no logon

$trigger = New-ScheduledTaskTrigger -AtLogOn

Trigger com repetição

$trigger = New-ScheduledTaskTrigger -Once -At "08:00" -RepetitionInterval (New-
TimeSpan -Hours 1) -RepetitionDuration (New-TimeSpan -Hours 12)

Trigger com atraso

$trigger = New-ScheduledTaskTrigger -Daily -At "00:00"

$trigger.Delay = "PT15M" # Atraso de 15 minutos

4.2.5 Configurações Avançadas

Settings completos

$settings = New-ScheduledTaskSettingsSet `

 -AllowStartIfOnBatteries ` # Permitir iniciar em bateria

 -DontStopIfGoingOnBatteries ` # Não parar se entrar em bateria

 -StartWhenAvailable ` # Iniciar quando possível se perdeu horário

 -RunOnlyIfNetworkAvailable ` # Executar apenas se houver rede

 -ExecutionTimeLimit (New-TimeSpan -Hours 2) ` # Tempo máximo de execução

 -RestartCount 3 ` # Tentativas de restart em falha

 -RestartInterval (New-TimeSpan -Minutes 5) ` # Intervalo entre tentativas

 -MultipleInstances IgnoreNew # Comportamento se já estiver executando

Outras opções de MultipleInstances

- Parallel: Executar em paralelo

- Queue: Enfileirar

- StopExisting: Parar existente e iniciar nova

- IgnoreNew: Ignorar nova instância (padrão)

4.2.6 Credenciais e Permissões

Executar como SYSTEM

Register-ScheduledTask `

 -TaskName "MinhaTask" `

 -Action $action `

 -Trigger $trigger `

 -User "SYSTEM"

Executar como usuário específico (solicita senha)

Register-ScheduledTask `

 -TaskName "MinhaTask" `

 -Action $action `

 -Trigger $trigger `

 -User "DOMINIO\Usuario"

Executar com privilégios elevados

$principal = New-ScheduledTaskPrincipal `

 -UserId "SYSTEM" `

 -LogonType ServiceAccount `

 -RunLevel Highest

Register-ScheduledTask `

 -TaskName "MinhaTask" `

 -Action $action `

 -Trigger $trigger `

 -Principal $principal

Executar independente do usuário estar logado

$principal = New-ScheduledTaskPrincipal `

 -UserId "DOMINIO\Usuario" `

 -LogonType Password `

 -RunLevel Limited

Usar credencial armazenada

$cred = Get-Credential

Register-ScheduledTask `

 -TaskName "MinhaTask" `

 -Action $action `

 -Trigger $trigger `

 -User $cred.UserName `

 -Password $cred.GetNetworkCredential().Password

4.2.7 Modificar e Gerenciar Tarefas Existentes

Obter tarefa existente

$task = Get-ScheduledTask -TaskName "MinhaTask"

Modificar trigger

$newTrigger = New-ScheduledTaskTrigger -Daily -At "05:00"

Set-ScheduledTask -TaskName "MinhaTask" -Trigger $newTrigger

Modificar ação

$newAction = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-File C:\Scripts\NovoScript.ps1"

Set-ScheduledTask -TaskName "MinhaTask" -Action $newAction

Desabilitar tarefa

Disable-ScheduledTask -TaskName "MinhaTask"

Habilitar tarefa

Enable-ScheduledTask -TaskName "MinhaTask"

Executar tarefa manualmente

Start-ScheduledTask -TaskName "MinhaTask"

Parar execução

Stop-ScheduledTask -TaskName "MinhaTask"

Remover tarefa

Unregister-ScheduledTask -TaskName "MinhaTask" -Confirm:$false

Exportar tarefa para XML

$task = Get-ScheduledTask -TaskName "MinhaTask"

$task | Export-ScheduledTask | Out-File "C:\Backup\MinhaTask.xml"

Importar tarefa de XML

Register-ScheduledTask -Xml (Get-Content "C:\Backup\MinhaTask.xml" | Out-
String) -TaskName "MinhaTask"

4.2.8 Exemplo Completo: Sistema de Tarefas Agendadas

Arquivo: GerenciadorTarefas.ps1

<#

.SYNOPSIS

 Sistema completo de gerenciamento de tarefas agendadas

#>

Função para criar tarefa de backup

function New-BackupTask {

 param(

 [string]$BackupPath = "C:\Backups",

 [string]$SourcePath = "C:\Dados",

 [string]$Horario = "22:00"

)

 Write-Host "Criando tarefa de backup..." -ForegroundColor Yellow

 # Script de backup inline

 $scriptBackup = @"

`$origem = '$SourcePath'

`$destino = '$BackupPath'

`$timestamp = Get-Date -Format 'yyyyMMdd_HHmmss'

`$nomeBackup = "Backup_`$timestamp.zip"

`$caminhoCompleto = Join-Path `$destino `$nomeBackup

if (-not (Test-Path `$destino)) {

 New-Item -Path `$destino -ItemType Directory -Force | Out-Null

}

try {

 Compress-Archive -Path `$origem -DestinationPath `$caminhoCompleto -
CompressionLevel Optimal

 Write-Output "Backup criado: `$caminhoCompleto"

 # Limpar backups antigos (manter últimos 7)

 Get-ChildItem -Path `$destino -Filter "Backup_*.zip" |

 Sort-Object CreationTime -Descending |

 Select-Object -Skip 7 |

 Remove-Item -Force

}

catch {

 Write-Error "Erro no backup: `$_"

 exit 1

}

"@

 # Salvar script

 $scriptPath = "C:\Scripts\BackupAutomatico.ps1"

 if (-not (Test-Path "C:\Scripts")) {

 New-Item -Path "C:\Scripts" -ItemType Directory -Force | Out-Null

 }

 $scriptBackup | Out-File -FilePath $scriptPath -Encoding UTF8 -Force

 # Criar tarefa

 $action = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-NoProfile -ExecutionPolicy Bypass -File `"$scriptPath`""

 $trigger = New-ScheduledTaskTrigger -Daily -At $Horario

 $settings = New-ScheduledTaskSettingsSet `

 -AllowStartIfOnBatteries `

 -DontStopIfGoingOnBatteries `

 -StartWhenAvailable `

 -ExecutionTimeLimit (New-TimeSpan -Hours 2)

 Register-ScheduledTask `

 -TaskName "Backup Automático Dados" `

 -Description "Backup diário automático em $Horario" `

 -Action $action `

 -Trigger $trigger `

 -Settings $settings `

 -User "SYSTEM" `

 -Force

 Write-Host "✓ Tarefa de backup criada com sucesso!" -ForegroundColor Green

 Write-Host " Horário: $Horario" -ForegroundColor Cyan

 Write-Host " Origem: $SourcePath" -ForegroundColor Cyan

 Write-Host " Destino: $BackupPath" -ForegroundColor Cyan

}

Função para criar tarefa de limpeza

function New-CleanupTask {

 param(

 [string]$TempPath = "C:\Temp",

 [int]$DaysOld = 30

)

 Write-Host "Criando tarefa de limpeza..." -ForegroundColor Yellow

 $scriptLimpeza = @"

`$caminho = '$TempPath'

`$dias = $DaysOld

`$dataLimite = (Get-Date).AddDays(-`$dias)

if (Test-Path `$caminho) {

 `$arquivos = Get-ChildItem -Path `$caminho -Recurse -File |

 Where-Object { `$_.LastWriteTime -lt `$dataLimite }

 `$totalArquivos = `$arquivos.Count

 `$tamanhoTotal = (`$arquivos | Measure-Object -Property Length -Sum).Sum /
1MB

 Write-Output "Encontrados `$totalArquivos arquivos antigos"

 Write-Output "Espaço a liberar: `$([math]::Round(`$tamanhoTotal, 2)) MB"

 `$arquivos | Remove-Item -Force -ErrorAction SilentlyContinue

 Write-Output "Limpeza concluída!"

}

"@

 $scriptPath = "C:\Scripts\LimpezaAutomatica.ps1"

 $scriptLimpeza | Out-File -FilePath $scriptPath -Encoding UTF8 -Force

 $action = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-NoProfile -ExecutionPolicy Bypass -File `"$scriptPath`""

 # Executar semanalmente aos domingos à 01:00

 $trigger = New-ScheduledTaskTrigger -Weekly -DaysOfWeek Sunday -At "01:00"

 $settings = New-ScheduledTaskSettingsSet `

 -AllowStartIfOnBatteries `

 -DontStopIfGoingOnBatteries `

 -StartWhenAvailable

 Register-ScheduledTask `

 -TaskName "Limpeza Arquivos Temporários" `

 -Description "Remove arquivos temporários com mais de $DaysOld dias" `

 -Action $action `

 -Trigger $trigger `

 -Settings $settings `

 -User "SYSTEM" `

 -Force

 Write-Host "✓ Tarefa de limpeza criada com sucesso!" -ForegroundColor Green

}

Função para criar tarefa de monitoramento

function New-MonitoringTask {

 param(

 [int]$IntervalMinutes = 15

)

 Write-Host "Criando tarefa de monitoramento..." -ForegroundColor Yellow

 $scriptMonitor = @"

`$alertas = @()

Verificar CPU

`$cpu = (Get-CimInstance Win32_Processor).LoadPercentage

if (`$cpu -gt 90) {

 `$alertas += "CPU alta: `$cpu%"

}

Verificar Memória

`$os = Get-CimInstance Win32_OperatingSystem

`$memoriaUsada = [math]::Round(((`$os.TotalVisibleMemorySize -
`$os.FreePhysicalMemory) / `$os.TotalVisibleMemorySize) * 100, 2)

if (`$memoriaUsada -gt 90) {

 `$alertas += "Memória alta: `$memoriaUsada%"

}

Verificar Disco

`$discos = Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3"

foreach (`$disco in `$discos) {

 `$percentUsado = [math]::Round(((`$disco.Size - `$disco.FreeSpace) /
`$disco.Size) * 100, 2)

 if (`$percentUsado -gt 90) {

 `$alertas += "Disco `$(`$disco.DeviceID) cheio: `$percentUsado%"

 }

}

if (`$alertas.Count -gt 0) {

 `$logPath = "C:\Logs\Alertas_`$(Get-Date -Format 'yyyyMMdd').log"

 if (-not (Test-Path (Split-Path `$logPath))) {

 New-Item -Path (Split-Path `$logPath) -ItemType Directory -Force | Out-Null

 }

 `$timestamp = Get-Date -Format 'yyyy-MM-dd HH:mm:ss'

 foreach (`$alerta in `$alertas) {

 "[`$timestamp] ALERTA: `$alerta" | Out-File `$logPath -Append

 }

}

"@

 $scriptPath = "C:\Scripts\MonitoramentoSistema.ps1"

 $scriptMonitor | Out-File -FilePath $scriptPath -Encoding UTF8 -Force

 $action = New-ScheduledTaskAction `

 -Execute "PowerShell.exe" `

 -Argument "-NoProfile -ExecutionPolicy Bypass -File `"$scriptPath`""

 # Trigger repetido a cada X minutos

 $trigger = New-ScheduledTaskTrigger `

 -Once -At "00:00" `

 -RepetitionInterval (New-TimeSpan -Minutes $IntervalMinutes) `

 -RepetitionDuration ([TimeSpan]::MaxValue)

 $settings = New-ScheduledTaskSettingsSet `

 -AllowStartIfOnBatteries `

 -DontStopIfGoingOnBatteries `

 -ExecutionTimeLimit (New-TimeSpan -Minutes 5) `

 -MultipleInstances IgnoreNew

 Register-ScheduledTask `

 -TaskName "Monitoramento Sistema" `

 -Description "Monitora recursos do sistema a cada $IntervalMinutes minutos"
`

 -Action $action `

 -Trigger $trigger `

 -Settings $settings `

 -User "SYSTEM" `

 -Force

 Write-Host "✓ Tarefa de monitoramento criada com sucesso!" -ForegroundColor
Green

 Write-Host " Intervalo: $IntervalMinutes minutos" -ForegroundColor Cyan

}

Função para listar todas as tarefas customizadas

function Get-CustomTasks {

 $taskNames = @(

 "Backup Automático Dados",

 "Limpeza Arquivos Temporários",

 "Monitoramento Sistema"

)

 Write-Host "`n=== TAREFAS CUSTOMIZADAS ===" -ForegroundColor Cyan

 foreach ($taskName in $taskNames) {

 $task = Get-ScheduledTask -TaskName $taskName -ErrorAction
SilentlyContinue

 if ($task) {

 $info = Get-ScheduledTaskInfo -TaskName $taskName

 Write-Host "`n[$taskName]" -ForegroundColor Yellow

 Write-Host " Estado: $($task.State)" -ForegroundColor $(if ($task.State -eq
'Ready') {'Green'} else {'Red'})

 Write-Host " Última Execução: $($info.LastRunTime)"

 Write-Host " Próxima Execução: $($info.NextRunTime)"

 Write-Host " Último Resultado: $($info.LastTaskResult)"

 }

 else {

 Write-Host "`n[$taskName]" -ForegroundColor Yellow

 Write-Host " Status: NÃO CRIADA" -ForegroundColor Red

 }

 }

}

Função para remover todas as tarefas customizadas

function Remove-AllCustomTasks {

 $taskNames = @(

 "Backup Automático Dados",

 "Limpeza Arquivos Temporários",

 "Monitoramento Sistema"

)

 Write-Host "Removendo tarefas customizadas..." -ForegroundColor Yellow

 foreach ($taskName in $taskNames) {

 try {

 Unregister-ScheduledTask -TaskName $taskName -Confirm:$false -
ErrorAction Stop

 Write-Host "✓ $taskName removida" -ForegroundColor Green

 }

 catch {

 Write-Host "✗ $taskName não encontrada" -ForegroundColor Gray

 }

 }

}

Menu interativo

function Show-Menu {

 Clear-Host

 Write-Host
"╔══╗" -
ForegroundColor Cyan

 Write-Host "║ GERENCIADOR DE TAREFAS AGENDADAS ║" -ForegroundColor
Cyan

 Write-Host
"╚══╝" -
ForegroundColor Cyan

 Write-Host ""

 Write-Host "1. Criar Tarefa de Backup" -ForegroundColor White

 Write-Host "2. Criar Tarefa de Limpeza" -ForegroundColor White

 Write-Host "3. Criar Tarefa de Monitoramento" -ForegroundColor White

 Write-Host "4. Listar Tarefas Customizadas" -ForegroundColor White

 Write-Host "5. Remover Todas as Tarefas" -ForegroundColor White

 Write-Host "6. Sair" -ForegroundColor White

 Write-Host ""

}

Loop do menu

do {

 Show-Menu

 $opcao = Read-Host "Escolha uma opção"

 switch ($opcao) {

 "1" {

 New-BackupTask

 Read-Host "`nPressione Enter para continuar"

 }

 "2" {

 New-CleanupTask

 Read-Host "`nPressione Enter para continuar"

 }

 "3" {

 New-MonitoringTask

 Read-Host "`nPressione Enter para continuar"

 }

 "4" {

 Get-CustomTasks

 Read-Host "`nPressione Enter para continuar"

 }

 "5" {

 $confirmacao = Read-Host "Tem certeza? (S/N)"

 if ($confirmacao -eq 'S') {

 Remove-AllCustomTasks

 }

 Read-Host "`nPressione Enter para continuar"

 }

 "6" {

 Write-Host "Encerrando..." -ForegroundColor Cyan

 }

 default {

 Write-Host "Opção inválida!" -ForegroundColor Red

 Start-Sleep -Seconds 2

 }

 }

} while ($opcao -ne "6")

Conclusão da Seção 4

Nesta seção, exploramos em profundidade:

1. Fundamentos de Scripting:

o Estrutura básica de scripts

o Parâmetros e validação

o Funções avançadas

2. Técnicas Avançadas:

o Tratamento robusto de erros

o Sistema de logging profissional

o Debugging e troubleshooting

3. Tarefas Agendadas:

o Criação e gerenciamento de tarefas

o Tipos de triggers

o Configurações avançadas

o Sistema completo de automação

Com essas habilidades, você pode criar soluções de automação robustas,
confiáveis e profissionais que executam tarefas complexas de forma

automatizada e eficiente.

5. ADMINISTRAÇÃO DE SISTEMAS OPERACIONAIS WINDOWS

5.1 Gerenciamento de Arquivos, Processos e Serviços

5.1.1 Gerenciamento de Arquivos e Diretórios

Navegação e Listagem

Get-Location (pwd): Obter diretório atual

Get-Location

pwd # Alias

Set-Location (cd): Mudar diretório

Set-Location C:\Windows

cd C:\Windows # Alias

sl C:\Windows # Alias

Navegar para diretório anterior

Set-Location -Path $PSHOME

Voltar ao diretório home

Set-Location ~

Push-Location e Pop-Location: Pilha de diretórios

Push-Location C:\Windows

Push-Location C:\Temp

Get-Location # C:\Temp

Pop-Location # Volta para C:\Windows

Pop-Location # Volta para o diretório inicial

Get-ChildItem (ls, dir): Listar arquivos e diretórios

Get-ChildItem

ls # Alias Unix

dir # Alias DOS

gci # Alias PowerShell

Listar com detalhes

Get-ChildItem -Force # Incluir ocultos

Get-ChildItem -Recurse # Recursivo (subdiretórios)

Get-ChildItem -File # Apenas arquivos

Get-ChildItem -Directory # Apenas diretórios

Filtrar por extensão

Get-ChildItem -Filter *.txt

Get-ChildItem -Include *.log, *.txt -Recurse

Get-ChildItem -Exclude *.tmp

Listar com profundidade específica

Get-ChildItem -Recurse -Depth 2

Listar arquivos ocultos e sistema

Get-ChildItem -Force -Attributes Hidden

Get-ChildItem -Attributes System

Ordenar resultados

Get-ChildItem | Sort-Object Length -Descending

Get-ChildItem | Sort-Object LastWriteTime

Criação de Arquivos e Diretórios

New-Item: Criar arquivos e diretórios

Criar arquivo vazio

New-Item -Path "arquivo.txt" -ItemType File

Criar arquivo com conteúdo

New-Item -Path "dados.txt" -ItemType File -Value "Conteúdo inicial"

Criar diretório

New-Item -Path "NovaPasta" -ItemType Directory

Criar estrutura de diretórios

New-Item -Path "Projeto\Src\Controllers" -ItemType Directory -Force

Criar múltiplos arquivos

1..5 | ForEach-Object {

 New-Item -Path "arquivo$_.txt" -ItemType File

}

Criar arquivo temporário

$tempFile = New-TemporaryFile

Write-Host "Arquivo temporário: $($tempFile.FullName)"

Mkdir (alias para criar diretórios)

mkdir "OutraPasta"

md "MaisPasta"

Cópia, Movimentação e Renomeação

Copy-Item: Copiar arquivos e diretórios

Copiar arquivo

Copy-Item -Path "origem.txt" -Destination "destino.txt"

cp origem.txt destino.txt # Alias

Copiar para outro diretório

Copy-Item -Path "arquivo.txt" -Destination "C:\Backup\"

Copiar diretório recursivamente

Copy-Item -Path "Pasta" -Destination "PastaCopia" -Recurse

Copiar múltiplos arquivos

Copy-Item -Path "*.txt" -Destination "C:\Documentos\"

Copiar preservando estrutura

Copy-Item -Path "C:\Projeto*" -Destination "D:\Backup\Projeto\" -Recurse -Force

Copiar com filtro

Get-ChildItem -Filter "*.log" | Copy-Item -Destination "C:\Logs\"

Move-Item: Mover/renomear arquivos

Mover arquivo

Move-Item -Path "arquivo.txt" -Destination "C:\Destino\"

mv arquivo.txt C:\Destino\ # Alias

Renomear arquivo

Move-Item -Path "antigo.txt" -Destination "novo.txt"

Mover diretório

Move-Item -Path "Pasta" -Destination "C:\NovoLocal\"

Mover com sobrescrita

Move-Item -Path "arquivo.txt" -Destination "C:\Destino\" -Force

Rename-Item: Renomear especificamente

Renomear arquivo

Rename-Item -Path "velho.txt" -NewName "novo.txt"

ren velho.txt novo.txt # Alias

Renomear diretório

Rename-Item -Path "PastaAntiga" -NewName "PastaNova"

Renomear múltiplos arquivos (adicionar prefixo)

Get-ChildItem -Filter "*.txt" | Rename-Item -NewName { "Backup_" + $_.Name }

Renomear múltiplos arquivos (trocar extensão)

Get-ChildItem -Filter "*.txt" | Rename-Item -NewName { $_.Name -replace '\.txt$',
'.log' }

Exclusão de Arquivos e Diretórios

Remove-Item: Remover arquivos e diretórios

Remover arquivo

Remove-Item -Path "arquivo.txt"

rm arquivo.txt # Alias Unix

del arquivo.txt # Alias DOS

Remover diretório vazio

Remove-Item -Path "Pasta"

Remover diretório com conteúdo

Remove-Item -Path "Pasta" -Recurse

Remover com confirmação

Remove-Item -Path "arquivo.txt" -Confirm

Remover forçadamente (incluindo readonly)

Remove-Item -Path "arquivo.txt" -Force

Remover múltiplos arquivos

Remove-Item -Path "*.tmp"

Get-ChildItem -Filter "*.log" | Remove-Item

Simular remoção (WhatIf)

Remove-Item -Path "Pasta" -Recurse -WhatIf

Remover arquivos antigos

Get-ChildItem -Filter "*.log" |

 Where-Object { $_.LastWriteTime -lt (Get-Date).AddDays(-30) } |

 Remove-Item

Clear-RecycleBin: Esvaziar lixeira

Clear-RecycleBin -DriveLetter C -Force

Clear-RecycleBin -Force # Todas as unidades

Leitura e Escrita de Arquivos

Get-Content: Ler conteúdo de arquivo

Ler arquivo completo

Get-Content -Path "arquivo.txt"

cat arquivo.txt # Alias Unix

type arquivo.txt # Alias DOS

Ler com encoding específico

Get-Content -Path "arquivo.txt" -Encoding UTF8

Ler últimas N linhas

Get-Content -Path "log.txt" -Tail 10

Ler primeiras N linhas

Get-Content -Path "dados.txt" -TotalCount 5

Ler como stream (linha por linha)

Get-Content -Path "grande.txt" -ReadCount 100

Monitorar arquivo em tempo real (tail -f)

Get-Content -Path "log.txt" -Wait -Tail 10

Ler como bytes

Get-Content -Path "imagem.jpg" -Encoding Byte

Set-Content: Escrever (sobrescrever) arquivo

Escrever texto

Set-Content -Path "arquivo.txt" -Value "Novo conteúdo"

"Texto direto" | Set-Content "arquivo.txt"

Escrever múltiplas linhas

Set-Content -Path "lista.txt" -Value @("Linha 1", "Linha 2", "Linha 3")

Escrever com encoding

Set-Content -Path "arquivo.txt" -Value "Conteúdo" -Encoding UTF8

Add-Content: Adicionar ao arquivo

Adicionar texto ao final

Add-Content -Path "log.txt" -Value "Nova entrada de log"

"Mais uma linha" | Add-Content "arquivo.txt"

Adicionar timestamp

Add-Content -Path "log.txt" -Value "$(Get-Date) - Evento registrado"

Out-File: Redirecionar saída para arquivo

Escrever saída de comando

Get-Process | Out-File "processos.txt"

Append

Get-Service | Out-File "servicos.txt" -Append

Com encoding

Get-ChildItem | Out-File "lista.txt" -Encoding UTF8

Com largura específica

Get-Process | Out-File "processos.txt" -Width 200

Manipulação de Conteúdo

Select-String: Buscar texto em arquivos (grep)

Buscar padrão em arquivo

Select-String -Path "log.txt" -Pattern "erro"

Buscar em múltiplos arquivos

Select-String -Path "*.txt" -Pattern "senha"

Case-sensitive

Select-String -Path "dados.txt" -Pattern "PowerShell" -CaseSensitive

Buscar com regex

Select-String -Path "log.txt" -Pattern "\d{3}\.\d{3}\.\d{3}-\d{2}"

Contexto (linhas antes/depois)

Select-String -Path "log.txt" -Pattern "erro" -Context 2,3

Buscar recursivamente

Get-ChildItem -Recurse -Filter "*.log" | Select-String -Pattern "falha"

Exibir apenas arquivos que contêm o padrão

Select-String -Path "*.txt" -Pattern "importante" -List

Compare-Object: Comparar arquivos

Comparar conteúdo de dois arquivos

$arquivo1 = Get-Content "versao1.txt"

$arquivo2 = Get-Content "versao2.txt"

Compare-Object -ReferenceObject $arquivo1 -DiƯerenceObject $arquivo2

Mostrar apenas diferenças

Compare-Object $arquivo1 $arquivo2 -PassThru

Incluir linhas iguais

Compare-Object $arquivo1 $arquivo2 -IncludeEqual

Measure-Object: Estatísticas de arquivo

Contar linhas em arquivo

Get-Content "arquivo.txt" | Measure-Object -Line

Contar palavras e caracteres

Get-Content "documento.txt" | Measure-Object -Word -Character -Line

Atributos e Propriedades de Arquivos

Get-Item e Get-ItemProperty: Obter informações

Obter informações de arquivo

$arquivo = Get-Item "documento.txt"

$arquivo.Name

$arquivo.Length

$arquivo.CreationTime

$arquivo.LastWriteTime

$arquivo.LastAccessTime

$arquivo.Extension

$arquivo.FullName

$arquivo.Directory

$arquivo.Attributes

Obter propriedades específicas

Get-ItemProperty -Path "arquivo.txt" -Name LastWriteTime

Set-ItemProperty: Modificar propriedades

Tornar arquivo readonly

Set-ItemProperty -Path "importante.txt" -Name IsReadOnly -Value $true

Remover readonly

Set-ItemProperty -Path "importante.txt" -Name IsReadOnly -Value $false

Modificar atributos

Set-ItemProperty -Path "arquivo.txt" -Name Attributes -Value "Hidden"

Set-ItemProperty -Path "arquivo.txt" -Name Attributes -Value "Archive"

Modificar timestamps

$arquivo = Get-Item "teste.txt"

$arquivo.CreationTime = "2025-01-01"

$arquivo.LastWriteTime = Get-Date

Test-Path: Verificar existência

Verificar se arquivo existe

Test-Path "arquivo.txt"

Verificar se diretório existe

Test-Path "C:\Pasta" -PathType Container

Verificar se é arquivo

Test-Path "documento.txt" -PathType Leaf

Resolve-Path: Resolver caminho completo

Resolve-Path ".\arquivo.txt"

Split-Path: Manipular caminhos

Split-Path "C:\Pasta\arquivo.txt" -Parent # C:\Pasta

Split-Path "C:\Pasta\arquivo.txt" -Leaf # arquivo.txt

Split-Path "C:\Pasta\arquivo.txt" -Extension # .txt

Join-Path: Combinar caminhos

Join-Path "C:\Dados" "arquivo.txt" # C:\Dados\arquivo.txt

Compressão e Descompressão

Compress-Archive: Criar arquivo ZIP

Comprimir arquivo

Compress-Archive -Path "arquivo.txt" -DestinationPath "arquivo.zip"

Comprimir diretório

Compress-Archive -Path "Pasta" -DestinationPath "backup.zip"

Comprimir múltiplos itens

Compress-Archive -Path "*.txt", "*.log" -DestinationPath "arquivos.zip"

Adicionar a arquivo existente

Compress-Archive -Path "novo.txt" -DestinationPath "arquivo.zip" -Update

Nível de compressão

Compress-Archive -Path "Dados" -DestinationPath "dados.zip" -CompressionLevel
Optimal

Níveis: Fastest, Optimal, NoCompression

Expand-Archive: Extrair arquivo ZIP

Extrair arquivo

Expand-Archive -Path "arquivo.zip" -DestinationPath "C:\Extraidos"

Extrair sobrescrevendo

Expand-Archive -Path "backup.zip" -DestinationPath "C:\Restore" -Force

Listar conteúdo do ZIP (sem extrair)

Add-Type -AssemblyName System.IO.Compression.FileSystem

$zip = [System.IO.Compression.ZipFile]::OpenRead("arquivo.zip")

$zip.Entries | Select-Object Name, Length, CompressedLength

$zip.Dispose()

Exemplo Completo: Sistema de Gerenciamento de Arquivos

Arquivo: GerenciadorArquivos.ps1

<#

.SYNOPSIS

 Sistema completo de gerenciamento de arquivos

#>

Função para organizar arquivos por extensão

function Organize-FilesByExtension {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path,

 [switch]$WhatIf

)

 Write-Host "`nOrganizando arquivos em: $Path" -ForegroundColor Cyan

 $arquivos = Get-ChildItem -Path $Path -File

 if ($arquivos.Count -eq 0) {

 Write-Host "Nenhum arquivo encontrado." -ForegroundColor Yellow

 return

 }

 $agrupados = $arquivos | Group-Object Extension

 foreach ($grupo in $agrupados) {

 $extensao = if ($grupo.Name) { $grupo.Name.TrimStart('.') } else {
"SemExtensao" }

 $pastaDestino = Join-Path $Path $extensao

 if (-not (Test-Path $pastaDestino)) {

 Write-Host "Criando pasta: $extensao" -ForegroundColor Yellow

 if (-not $WhatIf) {

 New-Item -Path $pastaDestino -ItemType Directory | Out-Null

 }

 }

 Write-Host "`nMovendo $($grupo.Count) arquivo(s) .$extensao" -
ForegroundColor Green

 foreach ($arquivo in $grupo.Group) {

 $destino = Join-Path $pastaDestino $arquivo.Name

 Write-Host " $($arquivo.Name) → $extensao\" -ForegroundColor Gray

 if (-not $WhatIf) {

 Move-Item -Path $arquivo.FullName -Destination $destino -Force

 }

 }

 }

 Write-Host "`nOrganização concluída!" -ForegroundColor Green

}

Função para encontrar arquivos duplicados

function Find-DuplicateFiles {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path,

 [switch]$Recurse

)

 Write-Host "`nBuscando arquivos duplicados..." -ForegroundColor Cyan

 $parametros = @{

 Path = $Path

 File = $true

 }

 if ($Recurse) { $parametros.Recurse = $true }

 $arquivos = Get-ChildItem @parametros

 Write-Host "Calculando hashes de $($arquivos.Count) arquivos..." -
ForegroundColor Yellow

 $hashes = $arquivos | ForEach-Object {

 [PSCustomObject]@{

 Path = $_.FullName

 Name = $_.Name

 Size = $_.Length

 Hash = (Get-FileHash -Path $_.FullName -Algorithm MD5).Hash

 }

 }

 $duplicados = $hashes | Group-Object Hash | Where-Object Count -gt 1

 if ($duplicados.Count -eq 0) {

 Write-Host "Nenhum arquivo duplicado encontrado." -ForegroundColor Green

 return

 }

 Write-Host "`nEncontrados $($duplicados.Count) conjuntos de duplicados:" -
ForegroundColor Red

 $espacoDesperdicio = 0

 foreach ($grupo in $duplicados) {

 $tamanho = $grupo.Group[0].Size

 $espacoDesperdicio += $tamanho * ($grupo.Count - 1)

 Write-Host "`n[$($grupo.Group[0].Name)] - $($grupo.Count) cópias -
$([math]::Round($tamanho/1MB, 2)) MB" -ForegroundColor Yellow

 foreach ($item in $grupo.Group) {

 Write-Host " $($item.Path)" -ForegroundColor Gray

 }

 }

 Write-Host "`nEspaço desperdiçado:
$([math]::Round($espacoDesperdicio/1MB, 2)) MB" -ForegroundColor Red

 return $duplicados

}

Função para limpar arquivos temporários

function Clear-TemporaryFiles {

 param(

 [int]$DaysOld = 7,

 [switch]$WhatIf

)

 $caminhos = @(

 $env:TEMP,

 "C:\Windows\Temp",

 "C:\Windows\Prefetch"

)

 $dataLimite = (Get-Date).AddDays(-$DaysOld)

 $totalRemovido = 0

 $espacoLiberado = 0

 Write-Host "`nLimpando arquivos temporários com mais de $DaysOld dias..." -
ForegroundColor Cyan

 foreach ($caminho in $caminhos) {

 if (-not (Test-Path $caminho)) {

 continue

 }

 Write-Host "`nVerificando: $caminho" -ForegroundColor Yellow

 try {

 $arquivos = Get-ChildItem -Path $caminho -File -Recurse -ErrorAction
SilentlyContinue |

 Where-Object { $_.LastWriteTime -lt $dataLimite }

 foreach ($arquivo in $arquivos) {

 try {

 $tamanho = $arquivo.Length

 Write-Host " Removendo: $($arquivo.Name)" -ForegroundColor Gray

 if (-not $WhatIf) {

 Remove-Item -Path $arquivo.FullName -Force -ErrorAction Stop

 $totalRemovido++

 $espacoLiberado += $tamanho

 }

 }

 catch {

 Write-Host " Erro ao remover: $($arquivo.Name)" -ForegroundColor Red

 }

 }

 }

 catch {

 Write-Host "Erro ao acessar: $caminho" -ForegroundColor Red

 }

 }

 Write-Host "`nLimpeza concluída!" -ForegroundColor Green

 Write-Host "Arquivos removidos: $totalRemovido" -ForegroundColor Cyan

 Write-Host "Espaço liberado: $([math]::Round($espacoLiberado/1MB, 2)) MB" -
ForegroundColor Cyan

}

Função para criar relatório de uso de disco

function Get-DiskUsageReport {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path,

 [int]$TopN = 20

)

 Write-Host "`nAnalisando uso de disco em: $Path" -ForegroundColor Cyan

 $diretorios = Get-ChildItem -Path $Path -Directory -ErrorAction SilentlyContinue

 $relatorio = @()

 foreach ($dir in $diretorios) {

 Write-Host "Calculando: $($dir.Name)..." -ForegroundColor Gray

 try {

 $tamanho = (Get-ChildItem -Path $dir.FullName -Recurse -File -ErrorAction
SilentlyContinue |

 Measure-Object -Property Length -Sum).Sum

 $quantidade = (Get-ChildItem -Path $dir.FullName -Recurse -File -
ErrorAction SilentlyContinue |

 Measure-Object).Count

 $relatorio += [PSCustomObject]@{

 Diretorio = $dir.Name

 TamanhoMB = [math]::Round($tamanho / 1MB, 2)

 TamanhoGB = [math]::Round($tamanho / 1GB, 2)

 Arquivos = $quantidade

 }

 }

 catch {

 Write-Host "Erro ao processar: $($dir.Name)" -ForegroundColor Red

 }

 }

 $relatorio = $relatorio | Sort-Object TamanhoMB -Descending | Select-Object -
First $TopN

 Write-Host "`nTop $TopN diretórios por tamanho:" -ForegroundColor Green

 $relatorio | Format-Table -AutoSize

 $totalGB = ($relatorio | Measure-Object -Property TamanhoGB -Sum).Sum

 Write-Host "Total: $([math]::Round($totalGB, 2)) GB" -ForegroundColor Cyan

 return $relatorio

}

Função para fazer backup inteligente

function New-SmartBackup {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Source,

 [Parameter(Mandatory=$true)]

 [string]$Destination,

 [int]$KeepBackups = 7,

 [string[]]$ExcludeExtensions = @("*.tmp", "*.temp", "*.cache")

)

 Write-Host "`n=== BACKUP INTELIGENTE ===" -ForegroundColor Cyan

 Write-Host "Origem: $Source" -ForegroundColor Yellow

 Write-Host "Destino: $Destination" -ForegroundColor Yellow

 # Criar diretório de destino

 if (-not (Test-Path $Destination)) {

 New-Item -Path $Destination -ItemType Directory -Force | Out-Null

 }

 # Nome do backup

 $timestamp = Get-Date -Format "yyyyMMdd_HHmmss"

 $backupName = "Backup_$timestamp"

 $backupPath = Join-Path $Destination $backupName

 Write-Host "`nColetando arquivos..." -ForegroundColor Yellow

 # Obter arquivos (excluir extensões especificadas)

 $arquivos = Get-ChildItem -Path $Source -Recurse -File

 foreach ($extensao in $ExcludeExtensions) {

 $arquivos = $arquivos | Where-Object { $_.Name -notlike $extensao }

 }

 Write-Host "Arquivos a fazer backup: $($arquivos.Count)" -ForegroundColor
Cyan

 $tamanhoTotal = ($arquivos | Measure-Object -Property Length -Sum).Sum

 Write-Host "Tamanho total: $([math]::Round($tamanhoTotal/1MB, 2)) MB" -
ForegroundColor Cyan

 # Criar backup compactado

 Write-Host "`nCriando arquivo de backup..." -ForegroundColor Yellow

 try {

 Compress-Archive -Path $Source -DestinationPath "$backupPath.zip" -
CompressionLevel Optimal

 $backupFile = Get-Item "$backupPath.zip"

 $compressao = [math]::Round(($backupFile.Length / $tamanhoTotal) * 100, 2)

 Write-Host "Backup criado com sucesso!" -ForegroundColor Green

 Write-Host "Arquivo: $backupName.zip" -ForegroundColor Cyan

 Write-Host "Tamanho compactado:
$([math]::Round($backupFile.Length/1MB, 2)) MB" -ForegroundColor Cyan

 Write-Host "Taxa de compressão: $compressao%" -ForegroundColor Cyan

 # Limpar backups antigos

 Write-Host "`nLimpando backups antigos..." -ForegroundColor Yellow

 $backupsAntigos = Get-ChildItem -Path $Destination -Filter "Backup_*.zip" |

 Sort-Object CreationTime -Descending |

 Select-Object -Skip $KeepBackups

 foreach ($backup in $backupsAntigos) {

 Remove-Item -Path $backup.FullName -Force

 Write-Host "Removido: $($backup.Name)" -ForegroundColor Gray

 }

 Write-Host "`nBackup concluído com sucesso!" -ForegroundColor Green

 }

 catch {

 Write-Host "Erro ao criar backup: $_" -ForegroundColor Red

 return $false

 }

 return $true

}

Menu principal

function Show-FileManagementMenu {

 do {

 Clear-Host

 Write-Host
"╔══╗" -
ForegroundColor Cyan

 Write-Host "║ SISTEMA DE GERENCIAMENTO ARQUIVOS ║" -
ForegroundColor Cyan

 Write-Host
"╚══╝" -
ForegroundColor Cyan

 Write-Host ""

 Write-Host "1. Organizar arquivos por extensão" -ForegroundColor White

 Write-Host "2. Encontrar arquivos duplicados" -ForegroundColor White

 Write-Host "3. Limpar arquivos temporários" -ForegroundColor White

 Write-Host "4. Relatório de uso de disco" -ForegroundColor White

 Write-Host "5. Criar backup inteligente" -ForegroundColor White

 Write-Host "6. Sair" -ForegroundColor White

 Write-Host ""

 $opcao = Read-Host "Escolha uma opção"

 switch ($opcao) {

 "1" {

 $caminho = Read-Host "Digite o caminho do diretório"

 if (Test-Path $caminho) {

 Organize-FilesByExtension -Path $caminho

 } else {

 Write-Host "Caminho não existe!" -ForegroundColor Red

 }

 Read-Host "`nPressione Enter para continuar"

 }

 "2" {

 $caminho = Read-Host "Digite o caminho do diretório"

 if (Test-Path $caminho) {

 $recurse = Read-Host "Buscar recursivamente? (S/N)"

 if ($recurse -eq 'S') {

 Find-DuplicateFiles -Path $caminho -Recurse

 } else {

 Find-DuplicateFiles -Path $caminho

 }

 }

 Read-Host "`nPressione Enter para continuar"

 }

 "3" {

 $dias = Read-Host "Remover arquivos com mais de quantos dias? (padrão:
7)"

 if ([string]::IsNullOrWhiteSpace($dias)) { $dias = 7 }

 Clear-TemporaryFiles -DaysOld $dias

 Read-Host "`nPressione Enter para continuar"

 }

 "4" {

 $caminho = Read-Host "Digite o caminho do diretório"

 if (Test-Path $caminho) {

 Get-DiskUsageReport -Path $caminho

 }

 Read-Host "`nPressione Enter para continuar"

 }

 "5" {

 $origem = Read-Host "Caminho de origem"

 $destino = Read-Host "Caminho de destino"

 if (Test-Path $origem) {

 New-SmartBackup -Source $origem -Destination $destino

 }

 Read-Host "`nPressione Enter para continuar"

 }

 }

 } while ($opcao -ne "6")

}

Executar menu

Show-FileManagementMenu

5.1.2 Gerenciamento de Processos

Listar e Consultar Processos

Get-Process: Obter processos em execução

Listar todos os processos

Get-Process

ps # Alias

Processo específico

Get-Process -Name notepad

Get-Process -Id 1234

Múltiplos processos

Get-Process -Name chrome, firefox, edge

Com wildcard

Get-Process -Name *oƯice*

Ordenar por uso de CPU

Get-Process | Sort-Object CPU -Descending | Select-Object -First 10

Ordenar por uso de memória

Get-Process | Sort-Object WorkingSet -Descending | Select-Object -First 10

Filtrar processos

Get-Process | Where-Object { $_.CPU -gt 100 }

Get-Process | Where-Object { $_.WorkingSet -gt 100MB }

Propriedades importantes

$processo = Get-Process -Name powershell | Select-Object -First 1

$processo.Id # ID do processo

$processo.ProcessName # Nome do processo

$processo.CPU # Tempo de CPU (segundos)

$processo.WorkingSet # Memória física (bytes)

$processo.VirtualMemorySize # Memória virtual

$processo.Threads.Count # Número de threads

$processo.StartTime # Hora de início

$processo.Path # Caminho do executável

$processo.Company # Empresa desenvolvedora

$processo.MainWindowTitle # Título da janela principal

Informações detalhadas

Get-Process -Name chrome | Format-List *

Get-Process -Name chrome | Get-Member

Iniciar Processos

Start-Process: Iniciar novo processo

Iniciar aplicação simples

Start-Process notepad

Iniciar com argumentos

Start-Process notepad -ArgumentList "C:\teste.txt"

Iniciar como administrador

Start-Process powershell -Verb RunAs

Iniciar e aguardar conclusão

Start-Process notepad -Wait

Iniciar minimizado

Start-Process calc -WindowStyle Minimized

Iniciar maximizado

Start-Process explorer -WindowStyle Maximized

Iniciar oculto

Start-Process powershell -ArgumentList "-File C:\script.ps1" -WindowStyle Hidden

Redirecionar saída

Start-Process ping -ArgumentList "8.8.8.8" -RedirectStandardOutput
"resultado.txt" -NoNewWindow

Iniciar com credenciais específicas

$cred = Get-Credential

Start-Process notepad -Credential $cred

Capturar objeto Process

$proc = Start-Process notepad -PassThru

$proc.Id

$proc.WaitForExit()

Exemplos práticos

Abrir URL no navegador padrão

Start-Process "https://www.google.com"

Abrir arquivo com aplicação padrão

Start-Process "documento.pdf"

Executar comando no CMD

Start-Process cmd -ArgumentList "/c ipconfig /all" -WindowStyle Hidden

Executar script PowerShell em nova janela

Start-Process powershell -ArgumentList "-File C:\Scripts\monitor.ps1" -
WindowStyle Normal

Parar Processos

Stop-Process: Encerrar processo

Por nome

Stop-Process -Name notepad

Por ID

Stop-Process -Id 1234

Forçar encerramento

Stop-Process -Name chrome -Force

Múltiplos processos

Stop-Process -Name notepad, wordpad

Com confirmação

Stop-Process -Name excel -Confirm

Simular (WhatIf)

Stop-Process -Name chrome -WhatIf

Parar todos os processos com um padrão

Get-Process -Name *oƯice* | Stop-Process -Force

Parar processos usando muita CPU

Get-Process | Where-Object { $_.CPU -gt 1000 } | Stop-Process -Force

Parar processos usando muita memória

Get-Process | Where-Object { $_.WorkingSet -gt 500MB } | Stop-Process

Usar método Kill() do objeto

$processo = Get-Process -Name notepad

$processo.Kill()

Parar processo com timeout

$processo = Get-Process -Name chrome | Select-Object -First 1

$processo.CloseMainWindow()

Start-Sleep -Seconds 5

if (-not $processo.HasExited) {

 $processo.Kill()

}

Aguardar Processos

Wait-Process: Aguardar encerramento

Aguardar processo terminar

Wait-Process -Name notepad

Aguardar com timeout

Wait-Process -Name chrome -Timeout 30

Aguardar múltiplos processos

Wait-Process -Name excel, word

Aguardar por ID

$proc = Start-Process notepad -PassThru

Wait-Process -Id $proc.Id

Exemplo: executar e aguardar

$processo = Start-Process powershell -ArgumentList "-File C:\script.ps1" -
PassThru

Wait-Process -Id $processo.Id

Write-Host "Processo finalizado com código: $($processo.ExitCode)"

Monitoramento de Processos

Debug-Process: Anexar debugger

Debug-Process -Name notepad

Prioridade de processos

$processo = Get-Process -Name notepad | Select-Object -First 1

Ver prioridade atual

$processo.PriorityClass

Alterar prioridade

$processo.PriorityClass = "High"

Valores: Idle, BelowNormal, Normal, AboveNormal, High, RealTime

Módulos carregados pelo processo

$processo = Get-Process -Name powershell | Select-Object -First 1

$processo.Modules | Select-Object ModuleName, FileName

Threads do processo

$processo.Threads | Select-Object Id, ThreadState, TotalProcessorTime

Exemplo Completo: Monitor de Processos

Arquivo: MonitorProcessos.ps1

<#

.SYNOPSIS

 Sistema de monitoramento e gerenciamento de processos

#>

Função para obter top processos

function Get-TopProcesses {

 param(

 [ValidateSet("CPU", "Memory", "Threads")]

 [string]$SortBy = "Memory",

 [int]$Top = 10

)

 $processos = Get-Process

 switch ($SortBy) {

 "CPU" {

 $sorted = $processos | Sort-Object CPU -Descending

 $label = "CPU Time (s)"

 $property = "CPU"

 }

 "Memory" {

 $sorted = $processos | Sort-Object WorkingSet -Descending

 $label = "Memory (MB)"

 $property = "WorkingSet"

 }

 "Threads" {

 $sorted = $processos | Sort-Object {$_.Threads.Count} -Descending

 $label = "Threads"

 $property = @{Name="Threads"; Expression={$_.Threads.Count}}

 }

 }

 Write-Host "`nTop $Top Processos por $SortBy :" -ForegroundColor Cyan

 $sorted | Select-Object -First $Top |

 Select-Object Name, Id,

 @{Name=$label; Expression={

 if ($SortBy -eq "Memory") {

 [math]::Round($_.$property / 1MB, 2)

 } elseif ($SortBy -eq "CPU") {

 [math]::Round($_.$property, 2)

 } else {

 $_.Threads.Count

 }

 }} |

 Format-Table -AutoSize

}

Função para monitorar processo específico

function Watch-Process {

 param(

 [Parameter(Mandatory=$true)]

 [string]$ProcessName,

 [int]$IntervalSeconds = 5,

 [int]$Duration = 60

)

 $inicio = Get-Date

 $limiteTempoWrite-Host "`nMonitorando processo: $ProcessName" -
ForegroundColor Cyan

 Write-Host "Duração: $Duration segundos | Intervalo: $IntervalSeconds
segundos`n" -ForegroundColor Yellow

 $medicoes = @()

 while (((Get-Date) - $inicio).TotalSeconds -lt $Duration) {

 $processo = Get-Process -Name $ProcessName -ErrorAction SilentlyContinue

 if ($processo) {

 $medicao = [PSCustomObject]@{

 Timestamp = Get-Date -Format "HH:mm:ss"

 CPU = [math]::Round($processo.CPU, 2)

 MemoryMB = [math]::Round($processo.WorkingSet / 1MB, 2)

 Threads = $processo.Threads.Count

 Handles = $processo.HandleCount

 }

 $medicoes += $medicao

 Write-Host "[$($medicao.Timestamp)] CPU: $($medicao.CPU)s | Memória:
$($medicao.MemoryMB) MB | Threads: $($medicao.Threads)" -ForegroundColor
Green

 } else {

 Write-Host "Processo não está em execução" -ForegroundColor Red

 break

 }

 Start-Sleep -Seconds $IntervalSeconds

 }

 if ($medicoes.Count -gt 0) {

 Write-Host "`n=== ESTATÍSTICAS ===" -ForegroundColor Cyan

 Write-Host "CPU Média: $([math]::Round(($medicoes.CPU | Measure-Object -
Average).Average, 2))s" -ForegroundColor Yellow

 Write-Host "CPU Máxima: $([math]::Round(($medicoes.CPU | Measure-Object
-Maximum).Maximum, 2))s" -ForegroundColor Yellow

 Write-Host "Memória Média: $([math]::Round(($medicoes.MemoryMB |
Measure-Object -Average).Average, 2)) MB" -ForegroundColor Yellow

 Write-Host "Memória Máxima: $([math]::Round(($medicoes.MemoryMB |
Measure-Object -Maximum).Maximum, 2)) MB" -ForegroundColor Yellow

 }

}

Função para encerrar processos problemáticos

function Stop-ProblematicProcesses {

 param(

 [int]$CPUThreshold = 90,

 [int]$MemoryThresholdMB = 1000,

 [switch]$WhatIf

)

 Write-Host "`nBuscando processos problemáticos..." -ForegroundColor Yellow

 Write-Host "Limites: CPU > $CPUThreshold s | Memória > $MemoryThresholdMB
MB`n" -ForegroundColor Gray

 $processos = Get-Process | Where-Object {

 $_.CPU -gt $CPUThreshold -or ($_.WorkingSet / 1MB) -gt
$MemoryThresholdMB

 }

 if ($processos.Count -eq 0) {

 Write-Host "Nenhum processo problemático encontrado." -ForegroundColor
Green

 return

 }

 Write-Host "Encontrados $($processos.Count) processo(s) problemático(s):" -
ForegroundColor Red

 foreach ($proc in $processos) {

 $cpu = [math]::Round($proc.CPU, 2)

 $mem = [math]::Round($proc.WorkingSet / 1MB, 2)

 Write-Host "`n[$($proc.Name)] PID: $($proc.Id)" -ForegroundColor Yellow

 Write-Host " CPU: $cpu s | Memória: $mem MB" -ForegroundColor Cyan

 if (-not $WhatIf) {

 $confirmacao = Read-Host "Encerrar este processo? (S/N)"

 if ($confirmacao -eq 'S' -or $confirmacao -eq 's') {

 try {

 Stop-Process -Id $proc.Id -Force

 Write-Host " ✓ Processo encerrado" -ForegroundColor Green

 } catch {

 Write-Host " ✗ Erro ao encerrar: $_" -ForegroundColor Red

 }

 }

 } else {

 Write-Host " [WhatIf] Processo seria encerrado" -ForegroundColor Gray

 }

 }

}

Função para gerar relatório de processos

function Export-ProcessReport {

 param(

 [string]$OutputPath = ".\ProcessReport_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv"

)

 Write-Host "`nGerando relatório de processos..." -ForegroundColor Yellow

 $processos = Get-Process | Select-Object Name, Id,

 @{Name='Company'; Expression={$_.Company}},

 @{Name='CPU_Seconds'; Expression={[math]::Round($_.CPU, 2)}},

 @{Name='Memory_MB'; Expression={[math]::Round($_.WorkingSet / 1MB, 2)}},

 @{Name='Threads'; Expression={$_.Threads.Count}},

 @{Name='Handles'; Expression={$_.HandleCount}},

 @{Name='StartTime'; Expression={$_.StartTime}},

 @{Name='Path'; Expression={$_.Path}}

 $processos | Export-Csv -Path $OutputPath -NoTypeInformation

 Write-Host "Relatório salvo em: $OutputPath" -ForegroundColor Green

 Write-Host "Total de processos: $($processos.Count)" -ForegroundColor Cyan

}

Menu principal

function Show-ProcessMenu {

 do {

 Clear-Host

 Write-Host
"╔══╗" -
ForegroundColor Cyan

 Write-Host "║ GERENCIADOR DE PROCESSOS ║" -ForegroundColor
Cyan

 Write-Host
"╚══╝" -
ForegroundColor Cyan

 Write-Host ""

 Write-Host "1. Top Processos (CPU)" -ForegroundColor White

 Write-Host "2. Top Processos (Memória)" -ForegroundColor White

 Write-Host "3. Monitorar Processo Específico" -ForegroundColor White

 Write-Host "4. Encerrar Processos Problemáticos" -ForegroundColor White

 Write-Host "5. Exportar Relatório" -ForegroundColor White

 Write-Host "6. Sair" -ForegroundColor White

 Write-Host ""

 $opcao = Read-Host "Escolha uma opção"

 switch ($opcao) {

 "1" {

 Get-TopProcesses -SortBy CPU

 Read-Host "`nPressione Enter para continuar"

 }

 "2" {

 Get-TopProcesses -SortBy Memory

 Read-Host "`nPressione Enter para continuar"

 }

 "3" {

 $nome = Read-Host "Nome do processo"

 $duracao = Read-Host "Duração (segundos)"

 Watch-Process -ProcessName $nome -Duration $duracao

 Read-Host "`nPressione Enter para continuar"

 }

 "4" {

 Stop-ProblematicProcesses

 Read-Host "`nPressione Enter para continuar"

 }

 "5" {

 Export-ProcessReport

 Read-Host "`nPressione Enter para continuar"

 }

 }

 } while ($opcao -ne "6")

}

Executar menu

Show-ProcessMenu

5.1.3 Gerenciamento de Serviços

Listar e Consultar Serviços

Get-Service: Obter serviços

Listar todos os serviços

Get-Service

Serviço específico

Get-Service -Name wuauserv

Múltiplos serviços

Get-Service -Name wuauserv, spooler, BITS

Com wildcard

Get-Service -Name *audio*

Filtrar por status

Get-Service | Where-Object Status -eq 'Running'

Get-Service | Where-Object Status -eq 'Stopped'

Serviços com dependências

Get-Service -Name w32time -RequiredServices # Serviços dos quais depende

Get-Service -Name w32time -DependentServices # Serviços que dependem dele

Propriedades importantes

$servico = Get-Service -Name wuauserv

$servico.Name # Nome do serviço

$servico.DisplayName # Nome de exibição

$servico.Status # Status (Running, Stopped, etc)

$servico.StartType # Tipo de inicialização

$servico.ServiceType # Tipo de serviço

$servico.CanStop # Pode ser parado?

$servico.CanPauseAndContinue # Pode ser pausado?

Informações detalhadas (WMI/CIM)

Get-CimInstance -ClassName Win32_Service -Filter "Name='wuauserv'" |

 Select-Object Name, DisplayName, State, StartMode, PathName, StartName

Serviços agrupados por status

Get-Service | Group-Object Status

Serviços ordenados

Get-Service | Sort-Object DisplayName

Controlar Serviços

Start-Service: Iniciar serviço

Iniciar serviço

Start-Service -Name wuauserv

Iniciar com passthru

Start-Service -Name spooler -PassThru

Iniciar e aguardar

Start-Service -Name BITS

Get-Service -Name BITS | Wait-Service -Status Running

Stop-Service: Parar serviço

Parar serviço

Stop-Service -Name wuauserv

Parar forçadamente

Stop-Service -Name spooler -Force

Parar sem confirmação

Stop-Service -Name BITS -Force -NoWait

Restart-Service: Reiniciar serviço

Reiniciar serviço

Restart-Service -Name wuauserv

Reiniciar forçadamente

Restart-Service -Name spooler -Force

Suspend-Service e Resume-Service: Pausar/Retomar

Pausar serviço (se suportado)

Suspend-Service -Name wuauserv

Retomar serviço

Resume-Service -Name wuauserv

Set-Service: Modificar propriedades

Alterar tipo de inicialização

Set-Service -Name wuauserv -StartupType Automatic

Set-Service -Name wuauserv -StartupType Manual

Set-Service -Name wuauserv -StartupType Disabled

Alterar descrição

Set-Service -Name MeuServico -Description "Descrição personalizada"

Alterar DisplayName

Set-Service -Name MeuServico -DisplayName "Meu Serviço Custom"

Alterar credenciais de execução

$cred = Get-Credential

Set-Service -Name MeuServico -Credential $cred

Criar e Remover Serviços

New-Service: Criar novo serviço

Criar serviço simples

New-Service -Name "MeuServico" `

 -BinaryPathName "C:\Scripts\meuservico.exe" `

 -DisplayName "Meu Serviço" `

 -Description "Descrição do serviço" `

 -StartupType Automatic

Criar com dependências

New-Service -Name "MeuServico" `

 -BinaryPathName "C:\Scripts\servico.exe" `

 -DependsOn "EventLog", "PlugPlay"

Criar com credenciais específicas

New-Service -Name "MeuServico" `

 -BinaryPathName "C:\Scripts\servico.exe" `

 -Credential (Get-Credential)

Remove-Service: Remover serviço (PS 6.0+)

Remove-Service -Name "MeuServico"

Em versões antigas, usar sc.exe

sc.exe delete MeuServico

Exemplo Completo: Gerenciador de Serviços

Arquivo: GerenciadorServicos.ps1

<#

.SYNOPSIS

 Sistema completo de gerenciamento de serviços

#>

Função para obter status de serviços críticos

function Get-CriticalServicesStatus {

 $servicosCriticos = @(

 "wuauserv", # Windows Update

 "BITS", # Background Intelligent Transfer

 "Spooler", # Print Spooler

 "EventLog", # Event Log

 "WinRM", # Windows Remote Management

 "W32Time", # Windows Time

 "Dnscache", # DNS Client

 "LanmanServer", # Server

 "LanmanWorkstation" # Workstation

)

 Write-Host "`n=== STATUS DE SERVIÇOS CRÍTICOS ===" -ForegroundColor Cyan

 $status = foreach ($servico in $servicosCriticos) {

 $svc = Get-Service -Name $servico -ErrorAction SilentlyContinue

 if ($svc) {

 [PSCustomObject]@{

 Nome = $svc.DisplayName

 Status = $svc.Status

 Inicialização = $svc.StartType

 Alerta = if ($svc.Status -ne 'Running' -and $svc.StartType -eq 'Automatic') {

"" } else { "✓" }

 }

 }

 }

 $status | Format-Table -AutoSize

 $alertas = $status | Where-Object Alerta -eq ""

 if ($alertas) {

 Write-Host "`nATENÇÃO: $($alertas.Count) serviço(s) com problema!" -
ForegroundColor Red

 } else {

 Write-Host "`nTodos os serviços críticos estão OK!" -ForegroundColor Green

 }

}

Função para iniciar serviços parados (automáticos)

function Start-StoppedAutomaticServices {

 param([switch]$WhatIf)

 Write-Host "`nBuscando serviços automáticos parados..." -ForegroundColor
Yellow

 $servicosParados = Get-Service | Where-Object {

 $_.Status -eq 'Stopped' -and $_.StartType -eq 'Automatic'

 }

 if ($servicosParados.Count -eq 0) {

 Write-Host "Todos os serviços automáticos estão em execução." -
ForegroundColor Green

 return

 }

 Write-Host "Encontrados $($servicosParados.Count) serviço(s) parado(s):`n" -
ForegroundColor Cyan

 foreach ($servico in $servicosParados) {

 Write-Host "[$($servico.DisplayName)]" -ForegroundColor Yellow

 if ($WhatIf) {

 Write-Host " [WhatIf] Seria iniciado" -ForegroundColor Gray

 } else {

 try {

 Start-Service -Name $servico.Name -ErrorAction Stop

 Write-Host " ✓ Iniciado com sucesso" -ForegroundColor Green

 } catch {

 Write-Host " ✗ Erro: $_" -ForegroundColor Red

 }

 }

 }

}

Função para monitorar serviço

function Watch-ServiceStatus {

 param(

 [Parameter(Mandatory=$true)]

 [string]$ServiceName,

 [int]$IntervalSeconds = 5,

 [int]$Duration = 60

)

 $inicio = Get-Date

 Write-Host "`nMonitorando serviço: $ServiceName" -ForegroundColor Cyan

 Write-Host "Duração: $Duration segundos | Intervalo: $IntervalSeconds
segundos`n" -ForegroundColor Yellow

 $mudancas = @()

 $statusAnterior = $null

 while (((Get-Date) - $inicio).TotalSeconds -lt $Duration) {

 $servico = Get-Service -Name $ServiceName -ErrorAction SilentlyContinue

 if ($servico) {

 $timestamp = Get-Date -Format "HH:mm:ss"

 if ($statusAnterior -and $servico.Status -ne $statusAnterior) {

 $mudanca = [PSCustomObject]@{

 Timestamp = $timestamp

 StatusAnterior = $statusAnterior

 StatusNovo = $servico.Status

 }

 $mudancas += $mudanca

 Write-Host "[$timestamp] MUDANÇA: $statusAnterior →
$($servico.Status)" -ForegroundColor Red

 } else {

 $cor = if ($servico.Status -eq 'Running') { 'Green' } else { 'Yellow' }

 Write-Host "[$timestamp] Status: $($servico.Status)" -ForegroundColor
$cor

 }

 $statusAnterior = $servico.Status

 } else {

 Write-Host "Serviço não encontrado: $ServiceName" -ForegroundColor Red

 break

 }

 Start-Sleep -Seconds $IntervalSeconds

 }

 if ($mudancas.Count -gt 0) {

 Write-Host "`n=== MUDANÇAS DETECTADAS ===" -ForegroundColor Cyan

 $mudancas | Format-Table -AutoSize

 } else {

 Write-Host "`nNenhuma mudança de status detectada." -ForegroundColor
Green

 }

}

Função para restart seguro de serviços

function Restart-ServiceSafely {

 param(

 [Parameter(Mandatory=$true)]

 [string]$ServiceName,

 [int]$TimeoutSeconds = 30

)

 Write-Host "`nReiniciando serviço: $ServiceName" -ForegroundColor Yellow

 $servico = Get-Service -Name $ServiceName -ErrorAction SilentlyContinue

 if (-not $servico) {

 Write-Host "Serviço não encontrado!" -ForegroundColor Red

 return $false

 }

 Write-Host "Status atual: $($servico.Status)" -ForegroundColor Cyan

 # Verificar dependências

 $dependentes = Get-Service -Name $ServiceName -DependentServices |

 Where-Object Status -eq 'Running'

 if ($dependentes) {

 Write-Host "`nAVISO: Os seguintes serviços dependem de $ServiceName :" -
ForegroundColor Yellow

 $dependentes | ForEach-Object { Write-Host " - $($_.DisplayName)" -
ForegroundColor Gray }

 $confirmacao = Read-Host "`nContinuar? (S/N)"

 if ($confirmacao -ne 'S' -and $confirmacao -ne 's') {

 Write-Host "Operação cancelada." -ForegroundColor Yellow

 return $false

 }

 }

 try {

 # Parar serviço

 Write-Host "Parando serviço..." -ForegroundColor Yellow

 Stop-Service -Name $ServiceName -Force -ErrorAction Stop

 # Aguardar parar

 $servico.WaitForStatus('Stopped',
[TimeSpan]::FromSeconds($TimeoutSeconds))

 Write-Host "✓ Serviço parado" -ForegroundColor Green

 # Aguardar um pouco

 Start-Sleep -Seconds 2

 # Iniciar serviço

 Write-Host "Iniciando serviço..." -ForegroundColor Yellow

 Start-Service -Name $ServiceName -ErrorAction Stop

 # Aguardar iniciar

 $servico.WaitForStatus('Running',
[TimeSpan]::FromSeconds($TimeoutSeconds))

 Write-Host "✓ Serviço iniciado" -ForegroundColor Green

 # Verificar status final

 $servico.Refresh()

 Write-Host "`nStatus final: $($servico.Status)" -ForegroundColor Cyan

 return $true

 }

 catch {

 Write-Host "✗ Erro ao reiniciar serviço: $_" -ForegroundColor Red

 return $false

 }

}

Função para exportar configuração de serviços

function Export-ServicesConfiguration {

 param(

 [string]$OutputPath = ".\ServicesConfig_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv"

)

 Write-Host "`nExportando configuração de serviços..." -ForegroundColor Yellow

 $servicos = Get-CimInstance -ClassName Win32_Service |

 Select-Object Name, DisplayName, State, StartMode, PathName, StartName,
Description

 $servicos | Export-Csv -Path $OutputPath -NoTypeInformation

 Write-Host "Configuração exportada para: $OutputPath" -ForegroundColor
Green

 Write-Host "Total de serviços: $($servicos.Count)" -ForegroundColor Cyan

}

Função para comparar configurações de serviços

function Compare-ServicesConfiguration {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$BaselineFile

)

 Write-Host "`nComparando configuração atual com baseline..." -
ForegroundColor Yellow

 # Carregar baseline

 $baseline = Import-Csv -Path $BaselineFile

 # Obter configuração atual

 $atual = Get-CimInstance -ClassName Win32_Service |

 Select-Object Name, DisplayName, State, StartMode

 $diferencas = @()

 foreach ($svcBaseline in $baseline) {

 $svcAtual = $atual | Where-Object Name -eq $svcBaseline.Name

 if (-not $svcAtual) {

 $diferencas += [PSCustomObject]@{

 Servico = $svcBaseline.Name

 Tipo = "Removido"

 Baseline = "Existia"

 Atual = "Não existe"

 }

 }

 elseif ($svcAtual.State -ne $svcBaseline.State) {

 $diferencas += [PSCustomObject]@{

 Servico = $svcBaseline.DisplayName

 Tipo = "Status"

 Baseline = $svcBaseline.State

 Atual = $svcAtual.State

 }

 }

 elseif ($svcAtual.StartMode -ne $svcBaseline.StartMode) {

 $diferencas += [PSCustomObject]@{

 Servico = $svcBaseline.DisplayName

 Tipo = "Inicialização"

 Baseline = $svcBaseline.StartMode

 Atual = $svcAtual.StartMode

 }

 }

 }

 # Verificar novos serviços

 foreach ($svcAtual in $atual) {

 if (-not ($baseline | Where-Object Name -eq $svcAtual.Name)) {

 $diferencas += [PSCustomObject]@{

 Servico = $svcAtual.Name

 Tipo = "Novo"

 Baseline = "Não existia"

 Atual = "Existe"

 }

 }

 }

 if ($diferencas.Count -eq 0) {

 Write-Host "Nenhuma diferença encontrada!" -ForegroundColor Green

 } else {

 Write-Host "`nEncontradas $($diferencas.Count) diferença(s):" -
ForegroundColor Red

 $diferencas | Format-Table -AutoSize

 }

 return $diferencas

}

Menu principal

function Show-ServiceMenu {

 do {

 Clear-Host

 Write-Host
"╔══╗" -
ForegroundColor Cyan

 Write-Host "║ GERENCIADOR DE SERVIÇOS ║" -ForegroundColor Cyan

 Write-Host
"╚══╝" -
ForegroundColor Cyan

 Write-Host ""

 Write-Host "1. Status de Serviços Críticos" -ForegroundColor White

 Write-Host "2. Iniciar Serviços Automáticos Parados" -ForegroundColor White

 Write-Host "3. Monitorar Serviço" -ForegroundColor White

 Write-Host "4. Reiniciar Serviço com Segurança" -ForegroundColor White

 Write-Host "5. Exportar Configuração" -ForegroundColor White

 Write-Host "6. Comparar com Baseline" -ForegroundColor White

 Write-Host "7. Sair" -ForegroundColor White

 Write-Host ""

 $opcao = Read-Host "Escolha uma opção"

 switch ($opcao) {

 "1" {

 Get-CriticalServicesStatus

 Read-Host "`nPressione Enter para continuar"

 }

 "2" {

 Start-StoppedAutomaticServices

 Read-Host "`nPressione Enter para continuar"

 }

 "3" {

 $nome = Read-Host "Nome do serviço"

 $duracao = Read-Host "Duração (segundos)"

 Watch-ServiceStatus -ServiceName $nome -Duration $duracao

 Read-Host "`nPressione Enter para continuar"

 }

 "4" {

 $nome = Read-Host "Nome do serviço"

 Restart-ServiceSafely -ServiceName $nome

 Read-Host "`nPressione Enter para continuar"

 }

 "5" {

 Export-ServicesConfiguration

 Read-Host "`nPressione Enter para continuar"

 }

 "6" {

 $arquivo = Read-Host "Caminho do arquivo baseline"

 if (Test-Path $arquivo) {

 Compare-ServicesConfiguration -BaselineFile $arquivo

 } else {

 Write-Host "Arquivo não encontrado!" -ForegroundColor Red

 }

 Read-Host "`nPressione Enter para continuar"

 }

 }

 } while ($opcao -ne "7")

}

Executar menu

Show-ServiceMenu

5.2 Acesso Remoto e Gerenciamento de Múltiplos Computadores

5.2.1 PowerShell Remoting - Fundamentos

O que é PowerShell Remoting?

PowerShell Remoting permite executar comandos e scripts em computadores
remotos de forma segura e eficiente. Baseia-se no protocolo WS-
Management (Web Services for Management) e usa WinRM (Windows Remote
Management).

Características:

 Comunicação criptografada por padrão

 Autenticação integrada ao Windows

 Suporte a sessões persistentes

 Execução em múltiplos computadores simultaneamente

 Funciona através de firewalls corporativos

Portas utilizadas:

 5985: HTTP (WinRM)

 5986: HTTPS (WinRM-HTTPS)

Habilitar PowerShell Remoting

No computador de destino (servidor)

Executar como Administrador

Habilitar Remoting (configuração rápida)

Enable-PSRemoting -Force

O que o comando faz:

1. Inicia o serviço WinRM

2. Define WinRM para inicialização automática

3. Cria regras de firewall

4. Registra configurações de sessão

Verificar configuração

Get-PSSessionConfiguration

Testar WinRM

Test-WSMan

Verificar configuração detalhada

winrm get winrm/config

Desabilitar Remoting (se necessário)

Disable-PSRemoting -Force

Configuração de TrustedHosts

Para conexões fora de domínio ou com autenticação NTLM:

No computador cliente

Executar como Administrador

Ver lista atual

Get-Item WSMan:\localhost\Client\TrustedHosts

Adicionar computador específico

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "Server01"

Adicionar múltiplos computadores

Set-Item WSMan:\localhost\Client\TrustedHosts -Value
"Server01,Server02,192.168.1.100"

Adicionar todos (não recomendado em produção)

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "*" -Force

Adicionar mantendo lista existente

$current = (Get-Item WSMan:\localhost\Client\TrustedHosts).Value

$new = "$current,NewServer"

Set-Item WSMan:\localhost\Client\TrustedHosts -Value $new

Firewall - Regras necessárias

Verificar regras de firewall para WinRM

Get-NetFirewallRule -Name "WINRM-HTTP-In-TCP*" | Select-Object Name,
Enabled, Profile

Habilitar regra manualmente (se necessário)

Enable-NetFirewallRule -Name "WINRM-HTTP-In-TCP"

Criar regra customizada

New-NetFirewallRule -Name "WinRM-HTTP" `

 -DisplayName "Windows Remote Management (HTTP-In)" `

 -Direction Inbound `

 -LocalPort 5985 `

 -Protocol TCP `

 -Action Allow

5.2.2 Executando Comandos Remotamente

Invoke-Command - Execução Remota

Sintaxe básica

Invoke-Command -ComputerName Server01 -ScriptBlock { Get-Process }

Com credenciais

$cred = Get-Credential

Invoke-Command -ComputerName Server01 -Credential $cred -ScriptBlock {

 Get-Service

}

Passar argumentos para o script block

Invoke-Command -ComputerName Server01 -ScriptBlock {

 param($ProcessName)

 Get-Process -Name $ProcessName

} -ArgumentList "powershell"

Usar variáveis locais no remoto

$serviceName = "wuauserv"

Invoke-Command -ComputerName Server01 -ScriptBlock {

 Get-Service -Name $using:serviceName

}

Executar em múltiplos computadores

$computadores = "Server01", "Server02", "Server03"

Invoke-Command -ComputerName $computadores -ScriptBlock {

 $env:COMPUTERNAME

 Get-Service -Name wuauserv | Select-Object Status

}

Executar script local remotamente

Invoke-Command -ComputerName Server01 -FilePath
"C:\Scripts\Diagnostico.ps1"

Executar em background (job)

$job = Invoke-Command -ComputerName Server01 -ScriptBlock {

 Get-EventLog -LogName System -Newest 100

} -AsJob

Receber resultados do job

Receive-Job -Job $job

Executar com throttle (controlar paralelismo)

Invoke-Command -ComputerName $computadores -ScriptBlock {

 Get-Service

} -ThrottleLimit 5

Salvar resultados em variável

$resultado = Invoke-Command -ComputerName Server01 -ScriptBlock {

 Get-Process | Where-Object CPU -gt 10

}

Propriedades adicionadas automaticamente

$resultado | Select-Object PSComputerName, Name, CPU

Enter-PSSession - Sessão Interativa

Iniciar sessão interativa

Enter-PSSession -ComputerName Server01

Com credenciais

$cred = Get-Credential

Enter-PSSession -ComputerName Server01 -Credential $cred

Comandos executados estão no contexto remoto

[Server01]: PS C:\> Get-Location

[Server01]: PS C:\> Get-Service

[Server01]: PS C:\> $env:COMPUTERNAME

Sair da sessão

[Server01]: PS C:\> Exit-PSSession

Ou simplesmente

exit

5.2.3 Gerenciamento de Sessões

New-PSSession - Criar Sessões Persistentes

Criar sessão

$session = New-PSSession -ComputerName Server01

Com credenciais

$cred = Get-Credential

$session = New-PSSession -ComputerName Server01 -Credential $cred

Criar múltiplas sessões

$sessions = New-PSSession -ComputerName Server01, Server02, Server03

Ver informações da sessão

$session | Format-List *

Propriedades importantes

$session.ComputerName

$session.State # Opened, Closed, Broken

$session.Availability # Available, Busy

$session.Id

Get-PSSession - Listar sessões

Get-PSSession

Filtrar sessões

Get-PSSession -ComputerName Server01

Get-PSSession -State Opened

Usar sessão existente com Invoke-Command

Invoke-Command -Session $session -ScriptBlock {

 Get-Process

}

Entrar em sessão existente

Enter-PSSession -Session $session

Remove-PSSession - Fechar sessões

Remove-PSSession -Session $session

Fechar todas as sessões

Get-PSSession | Remove-PSSession

Disconnect-PSSession - Desconectar (manter ativa)

Disconnect-PSSession -Session $session

Connect-PSSession - Reconectar

Connect-PSSession -Session $session

Ou reconectar por ID/nome

Get-PSSession -ComputerName Server01 | Connect-PSSession

Vantagens de Sessões Persistentes

Sem sessão persistente (cria/destrói conexão a cada vez)

Invoke-Command -ComputerName Server01 -ScriptBlock { $var = 1 }

Invoke-Command -ComputerName Server01 -ScriptBlock { $var } # null

Com sessão persistente (mantém estado)

$session = New-PSSession -ComputerName Server01

Invoke-Command -Session $session -ScriptBlock { $var = 1 }

Invoke-Command -Session $session -ScriptBlock { $var } # 1

Reusar sessão é mais eficiente

Measure-Command {

 1..10 | ForEach-Object {

 Invoke-Command -ComputerName Server01 -ScriptBlock { Get-Service }

 }

}

Measure-Command {

 $session = New-PSSession -ComputerName Server01

 1..10 | ForEach-Object {

 Invoke-Command -Session $session -ScriptBlock { Get-Service }

 }

 Remove-PSSession $session

}

5.2.4 Gerenciamento de Múltiplos Computadores

Executar em Múltiplos Servidores

Lista de computadores

$computadores = @(

 "Server01"

 "Server02"

 "Server03"

 "192.168.1.100"

)

Ou ler de arquivo

$computadores = Get-Content "C:\Scripts\servidores.txt"

Executar comando em todos

$resultados = Invoke-Command -ComputerName $computadores -ScriptBlock {

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 UptimeDias = [math]::Round((Get-Date) - (Get-CimInstance
Win32_OperatingSystem).LastBootUpTime).TotalDays, 2)

 MemoriaLivreGB = [math]::Round((Get-CimInstance
Win32_OperatingSystem).FreePhysicalMemory / 1MB, 2)

 }

}

$resultados | Format-Table -AutoSize

Com tratamento de erros

$resultados = foreach ($comp in $computadores) {

 try {

 Invoke-Command -ComputerName $comp -ScriptBlock {

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 Status = "Online"

 SO = (Get-CimInstance Win32_OperatingSystem).Caption

 Erro = $null

 }

 } -ErrorAction Stop

 }

 catch {

 [PSCustomObject]@{

 Computador = $comp

 Status = "OƯline"

 SO = $null

 Erro = $_.Exception.Message

 }

 }

}

$resultados | Format-Table -AutoSize

Executar em paralelo (mais rápido)

$resultados = Invoke-Command -ComputerName $computadores -ScriptBlock {

 Get-Service -Name wuauserv

} -ThrottleLimit 10

Com sessões persistentes (ainda mais eficiente)

$sessions = New-PSSession -ComputerName $computadores

$resultados = Invoke-Command -Session $sessions -ScriptBlock {

 Get-HotFix | Select-Object -First 5

}

Remove-PSSession $sessions

Exemplo: Inventário de Múltiplos Servidores

Script: Inventario-Servidores.ps1

param(

 [Parameter(Mandatory=$true)]

 [string[]]$ComputerName,

 [PSCredential]$Credential,

 [string]$OutputPath = ".\Inventario_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv"

)

Write-Host "Coletando inventário de $($ComputerName.Count) servidor(es)..." -
ForegroundColor Cyan

$scriptBlock = {

 try {

 # Sistema Operacional

 $os = Get-CimInstance Win32_OperatingSystem

 # Processador

 $cpu = Get-CimInstance Win32_Processor

 # Memória

 $cs = Get-CimInstance Win32_ComputerSystem

 # Discos

 $discos = Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3"

 $discoInfo = $discos | ForEach-Object {

 "$($_.DeviceID): $([math]::Round($_.FreeSpace/1GB, 2))GB livre de
$([math]::Round($_.Size/1GB, 2))GB"

 }

 # Rede

 $adapters = Get-NetAdapter | Where-Object Status -eq 'Up'

 $ips = $adapters | Get-NetIPAddress -AddressFamily IPv4 | Select-Object -
ExpandProperty IPAddress

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 SO = $os.Caption

 Versao = $os.Version

 Arquitetura = $os.OSArchitecture

 UltimoInicioMB = $os.LastBootUpTime

 Processador = $cpu.Name

 Nucleos = $cpu.NumberOfCores

 NucleosLogicos = $cpu.NumberOfLogicalProcessors

 MemoriaTotalGB = [math]::Round($cs.TotalPhysicalMemory / 1GB, 2)

 MemoriaLivreGB = [math]::Round($os.FreePhysicalMemory / 1MB, 2)

 Discos = $discoInfo -join " | "

 IPAddresses = $ips -join ", "

 Status = "Sucesso"

 Erro = $null

 }

 }

6. Melhores Práticas e Segurança

• Gestão de credenciais e segurança em scripts

• Padronização e documentação

5. ADMINISTRAÇÃO DE SISTEMAS OPERACIONAIS WINDOWS

5.1 Gerenciamento de Arquivos, Processos e Serviços

5.1.1 Gerenciamento de Arquivos e Diretórios

Cmdlets Básicos de Manipulação de Arquivos

Listar arquivos e diretórios

Get-ChildItem # Lista itens no diretório atual

Get-ChildItem C:\Windows # Lista itens em diretório específico

Get-ChildItem -Path C:\ -Recurse # Lista recursivamente

Get-ChildItem -File # Apenas arquivos

Get-ChildItem -Directory # Apenas diretórios

Get-ChildItem -Hidden # Incluir arquivos ocultos

Get-ChildItem -Filter "*.txt" # Filtrar por padrão

Aliases comuns

ls # Alias Unix-like

dir # Alias DOS-like

gci # Alias PowerShell

Navegação e Localização

Obter localização atual

Get-Location

pwd # Alias

Mudar diretório

Set-Location C:\Windows

cd C:\Windows # Alias

Voltar ao diretório anterior

Set-Location -Path $OLDPWD

cd -

Ir para diretório home

Set-Location ~

cd ~

Criar estrutura de caminhos

$caminho = Join-Path -Path "C:\Logs" -ChildPath "2025\10"

$caminho # C:\Logs\2025\10

Dividir caminho

Split-Path "C:\Windows\System32\cmd.exe" -Parent # C:\Windows\System32

Split-Path "C:\Windows\System32\cmd.exe" -Leaf # cmd.exe

Split-Path "C:\Windows\System32\cmd.exe" -Extension # .exe

Converter caminho relativo para absoluto

Resolve-Path ".\arquivo.txt"

Testar se caminho existe

Test-Path "C:\Windows\System32"

Test-Path "C:\arquivo_inexistente.txt"

Testar tipo

Test-Path "C:\Windows" -PathType Container # Diretório

Test-Path "C:\Windows\notepad.exe" -PathType Leaf # Arquivo

Criar, Copiar, Mover e Excluir

Criar novo item

New-Item -Path "C:\Temp\arquivo.txt" -ItemType File

New-Item -Path "C:\Temp\MinhaPasta" -ItemType Directory

Criar múltiplos diretórios

New-Item -Path "C:\Logs\2025\10\15" -ItemType Directory -Force

Criar arquivo com conteúdo

New-Item -Path "teste.txt" -ItemType File -Value "Conteúdo inicial"

Copiar arquivo

Copy-Item -Path "origem.txt" -Destination "destino.txt"

Copiar diretório recursivamente

Copy-Item -Path "C:\Origem" -Destination "D:\Destino" -Recurse

Copiar múltiplos arquivos

Copy-Item -Path "C:\Logs*.log" -Destination "D:\Backup\"

Copiar com filtro

Get-ChildItem -Path "C:\Origem" -Filter "*.txt" |

 Copy-Item -Destination "C:\Destino"

Mover arquivo

Move-Item -Path "arquivo.txt" -Destination "C:\NovoLocal\"

Renomear arquivo

Rename-Item -Path "antigo.txt" -NewName "novo.txt"

Renomear em lote

Get-ChildItem -Filter "*.tmp" |

 Rename-Item -NewName { $_.Name -replace '.tmp','.txt' }

Excluir arquivo

Remove-Item -Path "arquivo.txt"

Excluir diretório e conteúdo

Remove-Item -Path "C:\Temp" -Recurse -Force

Excluir com confirmação

Remove-Item -Path "importante.txt" -Confirm

Excluir arquivos antigos

Get-ChildItem -Path "C:\Logs" -Filter "*.log" |

 Where-Object LastWriteTime -lt (Get-Date).AddDays(-30) |

 Remove-Item -Force

Propriedades e Atributos de Arquivos

Obter informações detalhadas

$arquivo = Get-Item "C:\Windows\notepad.exe"

$arquivo | Format-List *

Propriedades importantes

$arquivo.Name # Nome do arquivo

$arquivo.FullName # Caminho completo

$arquivo.Length # Tamanho em bytes

$arquivo.Extension # Extensão

$arquivo.CreationTime # Data de criação

$arquivo.LastWriteTime # Última modificação

$arquivo.LastAccessTime # Último acesso

$arquivo.Attributes # Atributos

Modificar atributos

$arquivo.Attributes = "ReadOnly"

$arquivo.Attributes = "Hidden"

$arquivo.Attributes = "Archive, ReadOnly"

Remover atributos

$arquivo.Attributes = "Normal"

Modificar datas

$arquivo.CreationTime = Get-Date "2025-01-01"

$arquivo.LastWriteTime = Get-Date

Obter hash de arquivo (verificação de integridade)

Get-FileHash "arquivo.zip" -Algorithm SHA256

Get-FileHash "arquivo.zip" -Algorithm MD5

Comparar hashes

$hash1 = (Get-FileHash "arquivo1.txt").Hash

$hash2 = (Get-FileHash "arquivo2.txt").Hash

if ($hash1 -eq $hash2) {

 Write-Host "Arquivos idênticos"

} else {

 Write-Host "Arquivos diferentes"

}

Conteúdo de Arquivos

Ler conteúdo de arquivo

Get-Content "arquivo.txt"

cat "arquivo.txt" # Alias

Ler com encoding específico

Get-Content "arquivo.txt" -Encoding UTF8

Ler primeiras N linhas

Get-Content "arquivo.txt" -TotalCount 10

Get-Content "arquivo.txt" -Head 10

Ler últimas N linhas

Get-Content "arquivo.txt" -Tail 10

Monitorar arquivo (tail -f)

Get-Content "log.txt" -Wait -Tail 10

Escrever conteúdo (sobrescreve)

Set-Content -Path "arquivo.txt" -Value "Novo conteúdo"

Adicionar conteúdo (append)

Add-Content -Path "log.txt" -Value "Nova entrada de log"

Limpar conteúdo (mantém arquivo)

Clear-Content "arquivo.txt"

Ler arquivo como string única

$conteudo = Get-Content "arquivo.txt" -Raw

Processar linha por linha

Get-Content "arquivo.txt" | ForEach-Object {

 Write-Host "Linha: $_"

}

Buscar padrão em arquivo

Select-String -Path "arquivo.txt" -Pattern "erro"

Buscar em múltiplos arquivos

Get-ChildItem -Filter "*.log" |

 Select-String -Pattern "error" |

 Select-Object Path, LineNumber, Line

Compressão de Arquivos

Criar arquivo ZIP

Compress-Archive -Path "C:\Dados" -DestinationPath "C:\Backup\dados.zip"

Adicionar a ZIP existente

Compress-Archive -Path "C:\Novos" -DestinationPath "C:\Backup\dados.zip" -
Update

Nível de compressão

Compress-Archive -Path "C:\Dados" -DestinationPath "dados.zip" -
CompressionLevel Optimal

Níveis: NoCompression, Fastest, Optimal

Extrair arquivo ZIP

Expand-Archive -Path "dados.zip" -DestinationPath "C:\Extraidos"

Extrair forçando sobrescrita

Expand-Archive -Path "dados.zip" -DestinationPath "C:\Extraidos" -Force

Listar conteúdo de ZIP

Add-Type -AssemblyName System.IO.Compression.FileSystem

$zip = [System.IO.Compression.ZipFile]::OpenRead("dados.zip")

$zip.Entries | Select-Object Name, Length, CompressedLength

$zip.Dispose()

Exemplo Completo: Sistema de Gerenciamento de Arquivos

Arquivo: GerenciadorArquivos.ps1

<#

.SYNOPSIS

 Sistema completo de gerenciamento de arquivos

#>

Função para organizar arquivos por extensão

function Organize-FilesByExtension {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$SourcePath,

 [Parameter(Mandatory=$true)]

 [string]$DestinationPath,

 [switch]$WhatIf

)

 Write-Host "`n=== ORGANIZAÇÃO DE ARQUIVOS ===" -ForegroundColor Cyan

 Write-Host "Origem: $SourcePath" -ForegroundColor Yellow

 # Obter todos os arquivos

 $arquivos = Get-ChildItem -Path $SourcePath -File

 if ($arquivos.Count -eq 0) {

 Write-Host "Nenhum arquivo encontrado." -ForegroundColor Yellow

 return

 }

 Write-Host "Encontrados $($arquivos.Count) arquivos" -ForegroundColor Cyan

 # Agrupar por extensão

 $grupos = $arquivos | Group-Object Extension

 foreach ($grupo in $grupos) {

 $extensao = if ($grupo.Name) { $grupo.Name.TrimStart('.') } else {
"SemExtensao" }

 $pastaDestino = Join-Path $DestinationPath $extensao

 Write-Host "`nProcessando $($grupo.Count) arquivo(s) .$extensao" -
ForegroundColor Yellow

 if (-not $WhatIf) {

 if (-not (Test-Path $pastaDestino)) {

 New-Item -Path $pastaDestino -ItemType Directory | Out-Null

 Write-Host " Pasta criada: $pastaDestino" -ForegroundColor Green

 }

 }

 foreach ($arquivo in $grupo.Group) {

 $destino = Join-Path $pastaDestino $arquivo.Name

 if ($WhatIf) {

 Write-Host " [SIMULAÇÃO] Mover: $($arquivo.Name) → $pastaDestino" -
ForegroundColor Gray

 } else {

 try {

 Move-Item -Path $arquivo.FullName -Destination $destino -Force

 Write-Host " ✓ Movido: $($arquivo.Name)" -ForegroundColor Green

 }

 catch {

 Write-Host " ✗ Erro ao mover $($arquivo.Name): $_" -ForegroundColor
Red

 }

 }

 }

 }

 if ($WhatIf) {

 Write-Host "`n(Simulação - use sem -WhatIf para executar)" -ForegroundColor
Yellow

 } else {

 Write-Host "`nOrganização concluída!" -ForegroundColor Green

 }

}

Função para buscar arquivos duplicados

function Find-DuplicateFiles {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path,

 [switch]$Recurse

)

 Write-Host "`n=== BUSCA DE ARQUIVOS DUPLICADOS ===" -ForegroundColor
Cyan

 Write-Host "Analisando: $Path" -ForegroundColor Yellow

 $parametros = @{

 Path = $Path

 File = $true

 }

 if ($Recurse) { $parametros.Recurse = $true }

 Write-Host "Calculando hashes..." -ForegroundColor Yellow

 $arquivos = Get-ChildItem @parametros | ForEach-Object {

 [PSCustomObject]@{

 Path = $_.FullName

 Name = $_.Name

 Size = $_.Length

 Hash = (Get-FileHash $_.FullName -Algorithm MD5).Hash

 }

 }

 $duplicados = $arquivos | Group-Object Hash | Where-Object Count -gt 1

 if ($duplicados) {

 Write-Host "`nEncontrados $($duplicados.Count) grupos de arquivos
duplicados:" -ForegroundColor Red

 foreach ($grupo in $duplicados) {

 Write-Host "`n--- Grupo (Hash: $($grupo.Name.Substring(0,8))...) ---" -
ForegroundColor Yellow

 $primeiroArquivo = $grupo.Group[0]

 Write-Host "Tamanho: $([math]::Round($primeiroArquivo.Size / 1KB, 2)) KB" -
ForegroundColor Cyan

 foreach ($arquivo in $grupo.Group) {

 Write-Host " $($arquivo.Path)" -ForegroundColor White

 }

 }

 # Calcular espaço desperdiçado

 $espacoDuplicado = ($duplicados | ForEach-Object {

 $primeiroArquivo = $_.Group[0]

 $primeiroArquivo.Size * ($_.Count - 1)

 } | Measure-Object -Sum).Sum

 Write-Host "`nEspaço desperdiçado: $([math]::Round($espacoDuplicado /
1MB, 2)) MB" -ForegroundColor Red

 } else {

 Write-Host "`nNenhum arquivo duplicado encontrado." -ForegroundColor
Green

 }

}

Função para análise de uso de disco

function Get-DiskUsageReport {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$Path,

 [int]$TopN = 10

)

 Write-Host "`n=== RELATÓRIO DE USO DE DISCO ===" -ForegroundColor Cyan

 Write-Host "Analisando: $Path" -ForegroundColor Yellow

 # Analisar subdiretórios

 $diretorios = Get-ChildItem -Path $Path -Directory -ErrorAction SilentlyContinue

 $relatorio = foreach ($dir in $diretorios) {

 Write-Host "." -NoNewline -ForegroundColor Gray

 $tamanho = (Get-ChildItem -Path $dir.FullName -Recurse -File -ErrorAction
SilentlyContinue |

 Measure-Object -Property Length -Sum).Sum

 [PSCustomObject]@{

 Diretorio = $dir.Name

 CaminhoCompleto = $dir.FullName

 TamanhoBytes = $tamanho

 TamanhoMB = [math]::Round($tamanho / 1MB, 2)

 TamanhoGB = [math]::Round($tamanho / 1GB, 2)

 Arquivos = (Get-ChildItem -Path $dir.FullName -Recurse -File -ErrorAction
SilentlyContinue).Count

 }

 }

 Write-Host "`n"

 # Top N maiores diretórios

 $top = $relatorio | Sort-Object TamanhoBytes -Descending | Select-Object -First
$TopN

 Write-Host "TOP $TopN MAIORES DIRETÓRIOS:" -ForegroundColor Yellow

 $top | Format-Table Diretorio, TamanhoGB, TamanhoMB, Arquivos -AutoSize

 # Total

 $total = ($relatorio | Measure-Object -Property TamanhoBytes -Sum).Sum

 Write-Host "TOTAL: $([math]::Round($total / 1GB, 2)) GB" -ForegroundColor
Cyan

}

Função para backup incremental

function Start-IncrementalBackup {

 param(

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$SourcePath,

 [Parameter(Mandatory=$true)]

 [string]$BackupPath,

 [int]$DaysModified = 1

)

 Write-Host "`n=== BACKUP INCREMENTAL ===" -ForegroundColor Cyan

 # Criar diretório de backup

 $timestamp = Get-Date -Format "yyyyMMdd_HHmmss"

 $backupDestino = Join-Path $BackupPath "Backup_$timestamp"

 New-Item -Path $backupDestino -ItemType Directory -Force | Out-Null

 Write-Host "Origem: $SourcePath" -ForegroundColor Yellow

 Write-Host "Destino: $backupDestino" -ForegroundColor Yellow

 # Buscar arquivos modificados

 $dataLimite = (Get-Date).AddDays(-$DaysModified)

 $arquivos = Get-ChildItem -Path $SourcePath -Recurse -File |

 Where-Object LastWriteTime -gt $dataLimite

 if ($arquivos.Count -eq 0) {

 Write-Host "Nenhum arquivo modificado nos últimos $DaysModified dia(s)." -
ForegroundColor Yellow

 return

 }

 Write-Host "Arquivos a fazer backup: $($arquivos.Count)" -ForegroundColor
Cyan

 $contador = 0

 foreach ($arquivo in $arquivos) {

 $contador++

 Write-Progress -Activity "Backup em andamento" -Status "$contador de
$($arquivos.Count)" -PercentComplete (($contador / $arquivos.Count) * 100)

 # Recriar estrutura de diretórios

 $relativePath = $arquivo.FullName.Replace($SourcePath, '')

 $destinoArquivo = Join-Path $backupDestino $relativePath

 $pastaPai = Split-Path $destinoArquivo -Parent

 if (-not (Test-Path $pastaPai)) {

 New-Item -Path $pastaPai -ItemType Directory -Force | Out-Null

 }

 Copy-Item -Path $arquivo.FullName -Destination $destinoArquivo -Force

 }

 Write-Progress -Activity "Backup em andamento" -Completed

 # Comprimir backup

 Write-Host "Comprimindo backup..." -ForegroundColor Yellow

 $zipPath = "$backupDestino.zip"

 Compress-Archive -Path $backupDestino -DestinationPath $zipPath -
CompressionLevel Optimal

 # Remover pasta temporária

 Remove-Item -Path $backupDestino -Recurse -Force

 $zipInfo = Get-Item $zipPath

 Write-Host "`n✓ Backup concluído!" -ForegroundColor Green

 Write-Host "Arquivo: $zipPath" -ForegroundColor Cyan

 Write-Host "Tamanho: $([math]::Round($zipInfo.Length / 1MB, 2)) MB" -
ForegroundColor Cyan

}

5.1.2 Gerenciamento de Processos

Listar e Analisar Processos

Listar todos os processos

Get-Process

Processo específico

Get-Process -Name "notepad"

Get-Process -Id 1234

Múltiplos processos

Get-Process -Name "chrome", "firefox", "edge"

Propriedades detalhadas

Get-Process -Name "powershell" | Format-List *

Propriedades importantes

$proc = Get-Process -Name "powershell" | Select-Object -First 1

$proc.Name # Nome do processo

$proc.Id # PID

$proc.CPU # Tempo de CPU (segundos)

$proc.WorkingSet # Memória física (bytes)

$proc.VirtualMemorySize # Memória virtual

$proc.Threads.Count # Número de threads

$proc.StartTime # Hora de início

$proc.Path # Caminho do executável

$proc.Company # Nome da empresa

$proc.ProductVersion # Versão do produto

Filtrar processos

Get-Process | Where-Object CPU -gt 10

Get-Process | Where-Object WorkingSet -gt 100MB

Get-Process | Where-Object Company -like "*Microsoft*"

Ordenar por uso de recursos

Get-Process | Sort-Object CPU -Descending | Select-Object -First 10

Get-Process | Sort-Object WorkingSet -Descending | Select-Object -First 10

Agrupar por empresa

Get-Process | Group-Object Company | Sort-Object Count -Descending

Estatísticas

Get-Process | Measure-Object -Property CPU, WorkingSet -Sum -Average

Exportar lista de processos

Get-Process | Export-Csv "processos_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv" -NoTypeInformation

Iniciar e Parar Processos

Iniciar processo

Start-Process "notepad.exe"

Iniciar com argumentos

Start-Process "notepad.exe" -ArgumentList "C:\arquivo.txt"

Iniciar e aguardar conclusão

Start-Process "ping.exe" -ArgumentList "google.com" -Wait

Iniciar como administrador

Start-Process "powershell.exe" -Verb RunAs

Iniciar oculto

Start-Process "cmd.exe" -WindowStyle Hidden

Iniciar e capturar objeto do processo

$proc = Start-Process "notepad.exe" -PassThru

$proc.Id

Parar processo por nome

Stop-Process -Name "notepad"

Parar processo por ID

Stop-Process -Id 1234

Parar forçadamente

Stop-Process -Name "chrome" -Force

Parar com confirmação

Stop-Process -Name "excel" -Confirm

Parar todos os processos com nome específico

Get-Process -Name "chrome" | Stop-Process -Force

Aguardar processo terminar

$proc = Get-Process -Name "setup"

$proc.WaitForExit()

Aguardar com timeout

$proc.WaitForExit(30000) # 30 segundos

Monitoramento Avançado de Processos

Obter processos com proprietário (requer privilégios)

Get-CimInstance Win32_Process | Select-Object ProcessId, Name, @{

 Name='Owner'

 Expression={

 $owner = $_.GetOwner()

 "$($owner.Domain)\$($owner.User)"

 }

}

Obter linha de comando completa

Get-CimInstance Win32_Process |

 Where-Object Name -eq "powershell.exe" |

 Select-Object ProcessId, Name, CommandLine

Informações detalhadas de memória

$proc = Get-Process -Name "chrome" | Select-Object -First 1

[PSCustomObject]@{

 Nome = $proc.Name

 PID = $proc.Id

 'WorkingSet (MB)' = [math]::Round($proc.WorkingSet / 1MB, 2)

 'PrivateMemory (MB)' = [math]::Round($proc.PrivateMemorySize64 / 1MB, 2)

 'VirtualMemory (MB)' = [math]::Round($proc.VirtualMemorySize64 / 1MB, 2)

 'PeakWorkingSet (MB)' = [math]::Round($proc.PeakWorkingSet64 / 1MB, 2)

}

Monitorar alterações em processos

$antes = Get-Process

Start-Sleep -Seconds 10

$depois = Get-Process

Novos processos

Compare-Object $antes $depois -Property Name, Id |

 Where-Object SideIndicator -eq '=>' |

 Select-Object Name, Id

Processos encerrados

Compare-Object $antes $depois -Property Name, Id |

 Where-Object SideIndicator -eq '<=' |

 Select-Object Name, Id

Exemplo Completo: Monitor de Processos

Arquivo: MonitorProcessos.ps1

<#

.SYNOPSIS

 Monitora processos em tempo real

#>

param(

 [int]$CPUThreshold = 80,

 [int]$MemoryMBThreshold = 500,

 [int]$IntervalSeconds = 5,

 [switch]$ContinuousMonitoring

)

function Get-ProcessMetrics {

 param([int]$CPUThreshold, [int]$MemoryMBThreshold)

 $processos = Get-Process | Where-Object {

 ($_.CPU -gt $CPUThreshold) -or

 (($_.WorkingSet / 1MB) -gt $MemoryMBThreshold)

 }

 $metricas = foreach ($proc in $processos) {

 [PSCustomObject]@{

 Nome = $proc.Name

 PID = $proc.Id

 'CPU (s)' = [math]::Round($proc.CPU, 2)

 'Memória (MB)' = [math]::Round($proc.WorkingSet / 1MB, 2)

 Threads = $proc.Threads.Count

 Empresa = $proc.Company

 Caminho = $proc.Path

 Status = if ($proc.CPU -gt $CPUThreshold) { " CPU ALTA" } else { "
MEMÓRIA ALTA" }

 }

 }

 return $metricas

}

function Show-ProcessDashboard {

 param($Metricas)

 Clear-Host

 Write-Host
"╔══

════════════╗" -ForegroundColor Cyan

 Write-Host "║ MONITOR DE PROCESSOS EM TEMPO REAL ║" -
ForegroundColor Cyan

 Write-Host
"╚══

════════════╝" -ForegroundColor Cyan

 Write-Host ""

 Write-Host "Data/Hora: $(Get-Date -Format 'dd/MM/yyyy HH:mm:ss')" -
ForegroundColor Yellow

 Write-Host "Limites: CPU > $CPUThreshold s | Memória > $MemoryMBThreshold
MB" -ForegroundColor Yellow

 Write-Host ""

 if ($Metricas.Count -eq 0) {

 Write-Host "✓ Nenhum processo acima dos limites" -ForegroundColor Green

 } else {

 Write-Host " $($Metricas.Count) PROCESSO(S) ACIMA DOS LIMITES" -
ForegroundColor Red

 Write-Host ""

 $Metricas | Format-Table Nome, PID, 'CPU (s)', 'Memória (MB)', Threads, Status
-AutoSize

 }

 # Estatísticas gerais

 $todosProcessos = Get-Process

 $cpuTotal = ($todosProcessos | Measure-Object -Property CPU -Sum).Sum

 $memoriaTotal = ($todosProcessos | Measure-Object -Property WorkingSet -
Sum).Sum / 1GB

 Write-Host "`n--- ESTATÍSTICAS GERAIS ---" -ForegroundColor Cyan

 Write-Host "Total de Processos: $($todosProcessos.Count)" -ForegroundColor
White

 Write-Host "CPU Total: $([math]::Round($cpuTotal, 2)) s" -ForegroundColor
White

 Write-Host "Memória Total: $([math]::Round($memoriaTotal, 2)) GB" -
ForegroundColor White

}

Loop de monitoramento

do {

 $metricas = Get-ProcessMetrics -CPUThreshold $CPUThreshold -
MemoryMBThreshold $MemoryMBThreshold

 Show-ProcessDashboard -Metricas $metricas

 if ($ContinuousMonitoring) {

 Write-Host "`nAtualizando em $IntervalSeconds segundos... (Ctrl+C para
sair)" -ForegroundColor Gray

 Start-Sleep -Seconds $IntervalSeconds

 }

} while ($ContinuousMonitoring)

5.1.3 Gerenciamento de Serviços

Listar e Consultar Serviços

Listar todos os serviços

Get-Service

Serviço específico

Get-Service -Name "wuauserv"

Múltiplos serviços

Get-Service -Name "wuauserv", "BITS", "Spooler"

Filtrar por status

Get-Service | Where-Object Status -eq "Running"

Get-Service | Where-Object Status -eq "Stopped"

Filtrar por tipo de inicialização

Get-Service | Where-Object StartType -eq "Automatic"

Get-Service | Where-Object StartType -eq "Manual"

Get-Service | Where-Object StartType -eq "Disabled"

Propriedades detalhadas

$servico = Get-Service -Name "wuauserv"

$servico | Format-List *

$servico.Name # Nome do serviço

$servico.DisplayName # Nome de exibição

$servico.Status # Status (Running, Stopped, etc)

$servico.StartType # Tipo de inicialização

$servico.DependentServices # Serviços que dependem deste

$servico.ServicesDependedOn # Serviços dos quais este depende

Buscar serviços por nome de exibição

Get-Service | Where-Object DisplayName -like "*Update*"

Ordenar serviços

Get-Service | Sort-Object Status, DisplayName

Agrupar por status

Get-Service | Group-Object Status | Select-Object Name, Count

Exportar lista

Get-Service | Export-Csv "servicos.csv" -NoTypeInformation

Iniciar, Parar e Gerenciar Serviços

Iniciar serviço

Start-Service -Name "wuauserv"

Parar serviço

Stop-Service -Name "wuauserv"

Reiniciar serviço

Restart-Service -Name "wuauserv"

Suspender serviço (se suportado)

Suspend-Service -Name "servicoX"

Retomar serviço

Resume-Service -Name "servicoX"

Múltiplos serviços

Start-Service -Name "BITS", "wuauserv"

Stop-Service -Name "BITS", "wuauserv"

Forçar parada (incluir dependentes)

Stop-Service -Name "wuauserv" -Force

Aguardar serviço iniciar

$servico = Get-Service -Name "wuauserv"

$servico.WaitForStatus("Running", (New-TimeSpan -Seconds 30))

Configurar tipo de inicialização

Set-Service -Name "wuauserv" -StartupType Automatic

Set-Service -Name "wuauserv" -StartupType Manual

Set-Service -Name "wuauserv" -StartupType Disabled

Alterar descrição do serviço (requer WMI/CIM)

$servico = Get-CimInstance -ClassName Win32_Service -Filter
"Name='wuauserv'"

$servico | Set-CimInstance -Property @{Description="Serviço de Atualização do
Windows"}

Modificar conta de logon do serviço

$servico = Get-CimInstance -ClassName Win32_Service -Filter
"Name='MeuServico'"

$servico | Invoke-CimMethod -MethodName Change -Arguments @{

 StartName = "DOMINIO\Usuario"

 StartPassword = "senha"

}

Dependências de Serviços

Obter dependências

$servico = Get-Service -Name "wuauserv"

Serviços dos quais depende (pré-requisitos)

$servico.ServicesDependedOn | Select-Object Name, DisplayName, Status

Serviços que dependem deste

$servico.DependentServices | Select-Object Name, DisplayName, Status

Verificar dependências antes de parar

function Stop-ServiceWithDependencies {

 param([string]$ServiceName)

 $servico = Get-Service -Name $ServiceName

 if ($servico.DependentServices.Count -gt 0) {

 Write-Host "Serviços dependentes:" -ForegroundColor Yellow

 $servico.DependentServices | ForEach-Object {

 Write-Host " - $($_.DisplayName) ($($_.Status))" -ForegroundColor Cyan

 }

 $confirmar = Read-Host "Deseja parar todos os serviços dependentes? (S/N)"

 if ($confirmar -eq 'S') {

 Stop-Service -Name $ServiceName -Force

 }

 } else {

 Stop-Service -Name $ServiceName

 }

}

Iniciar serviço e suas dependências

function Start-ServiceWithDependencies {

 param([string]$ServiceName)

 $servico = Get-Service -Name $ServiceName

 # Iniciar dependências primeiro

 foreach ($dep in $servico.ServicesDependedOn) {

 if ($dep.Status -ne 'Running') {

 Write-Host "Iniciando dependência: $($dep.DisplayName)" -
ForegroundColor Yellow

 Start-Service -Name $dep.Name

 }

 }

 # Iniciar serviço principal

 Write-Host "Iniciando serviço: $($servico.DisplayName)" -ForegroundColor
Green

 Start-Service -Name $ServiceName

}

Exemplo Completo: Gerenciador de Serviços

Arquivo: GerenciadorServicos.ps1

<#

.SYNOPSIS

 Gerenciador completo de serviços do Windows

#>

Função para obter serviços críticos

function Get-CriticalServices {

 $servicosCriticos = @(

 "wuauserv", # Windows Update

 "BITS", # Serviço de Transferência Inteligente

 "EventLog", # Log de Eventos

 "WinRM", # Windows Remote Management

 "W32Time", # Hora do Windows

 "Spooler", # Spooler de Impressão

 "Dhcp", # Cliente DHCP

 "Dnscache", # Cliente DNS

 "LanmanServer", # Servidor

 "LanmanWorkstation" # Estação de Trabalho

)

 $resultado = foreach ($nome in $servicosCriticos) {

 $servico = Get-Service -Name $nome -ErrorAction SilentlyContinue

 if ($servico) {

 [PSCustomObject]@{

 Nome = $servico.Name

 NomeExibicao = $servico.DisplayName

 Status = $servico.Status

 TipoInicio = $servico.StartType

 Alerta = if ($servico.Status -ne 'Running' -and $servico.StartType -eq
'Automatic') {

 " ATENÇÃO"

 } else {

 "脥� OK"

 }

 }

 }

 }

 return $resultado

}

Função para reiniciar serviços problemáticos

function Restart-ProblematicServices {

 param(

 [int]$UptimeHoursThreshold = 720 # 30 dias

)

 Write-Host "Verificando serviços problemáticos..." -ForegroundColor Yellow

 $servicosProblematicos = Get-CimInstance Win32_Service | Where-Object {

 $_.State -eq 'Running' -and $_.StartMode -eq 'Auto'

 } | ForEach-Object {

 try {

 $processo = Get-Process -Id $_.ProcessId -ErrorAction Stop

 $uptime = (Get-Date) - $processo.StartTime

 if ($uptime.TotalHours -gt $UptimeHoursThreshold) {

 [PSCustomObject]@{

 Nome = $_.Name

 DisplayName = $_.DisplayName

 UptimeHoras = [math]::Round($uptime.TotalHours, 2)

 PID = $_.ProcessId

 }

 }

 }

 catch {

 # Processo não encontrado ou sem permissão

 }

 }

 if ($servicosProblematicos) {

 Write-Host "`nServiços com uptime alto:" -ForegroundColor Red

 $servicosProblematicos | Format-Table -AutoSize

 $confirmar = Read-Host "`nDeseja reiniciar estes serviços? (S/N)"

 if ($confirmar -eq 'S') {

 foreach ($servico in $servicosProblematicos) {

 Write-Host "Reiniciando $($servico.DisplayName)..." -ForegroundColor
Yellow

 try {

 Restart-Service -Name $servico.Nome -Force -ErrorAction Stop

 Write-Host " ✓ Reiniciado com sucesso" -ForegroundColor Green

 }

 catch {

 Write-Host " ✗ Erro: $_" -ForegroundColor Red

 }

 }

 }

 } else {

 Write-Host "Nenhum serviço problemático encontrado." -ForegroundColor
Green

 }

}

Função para backup de configuração de serviços

function Export-ServiceConfiguration {

 param(

 [string]$OutputPath = ".\ServiceBackup_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv"

)

 Write-Host "Exportando configuração de serviços..." -ForegroundColor Yellow

 $servicos = Get-CimInstance Win32_Service | Select-Object @{

 Name='Nome'

 Expression={$_.Name}

 }, @{

 Name='NomeExibicao'

 Expression={$_.DisplayName}

 }, @{

 Name='Status'

 Expression={$_.State}

 }, @{

 Name='TipoInicio'

 Expression={$_.StartMode}

 }, @{

 Name='ContaLogon'

 Expression={$_.StartName}

 }, @{

 Name='CaminhoExecutavel'

 Expression={$_.PathName}

 }

 $servicos | Export-Csv -Path $OutputPath -NoTypeInformation -Encoding UTF8

 Write-Host "✓ Configuração exportada para: $OutputPath" -ForegroundColor
Green

 Write-Host "Total de serviços: $($servicos.Count)" -ForegroundColor Cyan

}

Função para criar novo serviço

function New-WindowsService {

 param(

 [Parameter(Mandatory=$true)]

 [string]$ServiceName,

 [Parameter(Mandatory=$true)]

 [string]$DisplayName,

 [Parameter(Mandatory=$true)]

 [ValidateScript({Test-Path $_})]

 [string]$BinaryPath,

 [ValidateSet("Automatic", "Manual", "Disabled")]

 [string]$StartupType = "Manual",

 [string]$Description

)

 Write-Host "Criando serviço: $DisplayName" -ForegroundColor Yellow

 try {

 # Criar serviço usando New-Service (requer PowerShell 6+) ou sc.exe

 if ($PSVersionTable.PSVersion.Major -ge 6) {

 $params = @{

 Name = $ServiceName

 DisplayName = $DisplayName

 BinaryPathName = $BinaryPath

 StartupType = $StartupType

 }

 if ($Description) {

 $params.Description = $Description

 }

 New-Service @params

 } else {

 # Usar sc.exe para versões antigas

 $startType = switch ($StartupType) {

 "Automatic" { "auto" }

 "Manual" { "demand" }

 "Disabled" { "disabled" }

 }

 $result = & sc.exe create $ServiceName binPath= $BinaryPath DisplayName=
$DisplayName start= $startType

 if ($Description) {

 & sc.exe description $ServiceName $Description | Out-Null

 }

 }

 Write-Host "✓ Serviço criado com sucesso!" -ForegroundColor Green

 # Exibir informações

 $novoServico = Get-Service -Name $ServiceName

 $novoServico | Format-List Name, DisplayName, Status, StartType

 }

 catch {

 Write-Host "✗ Erro ao criar serviço: $_" -ForegroundColor Red

 }

}

Menu principal

function Show-ServiceMenu {

 do {

 Clear-Host

 Write-Host
"╔═══╗" -
ForegroundColor Cyan

 Write-Host "║ GERENCIADOR DE SERVIÇOS DO WINDOWS ║" -
ForegroundColor Cyan

 Write-Host
"╚═══╝" -
ForegroundColor Cyan

 Write-Host ""

 Write-Host "1. Verificar Serviços Críticos" -ForegroundColor White

 Write-Host "2. Listar Serviços em Execução" -ForegroundColor White

 Write-Host "3. Listar Serviços Parados" -ForegroundColor White

 Write-Host "4. Reiniciar Serviços Problemáticos" -ForegroundColor White

 Write-Host "5. Exportar Configuração de Serviços" -ForegroundColor White

 Write-Host "6. Buscar Serviço" -ForegroundColor White

 Write-Host "7. Gerenciar Serviço Específico" -ForegroundColor White

 Write-Host "8. Sair" -ForegroundColor White

 Write-Host ""

 $opcao = Read-Host "Escolha uma opção"

 switch ($opcao) {

 "1" {

 $criticos = Get-CriticalServices

 $criticos | Format-Table -AutoSize

 Read-Host "`nPressione Enter para continuar"

 }

 "2" {

 Get-Service | Where-Object Status -eq "Running" |

 Sort-Object DisplayName |

 Format-Table Name, DisplayName, Status -AutoSize

 Read-Host "`nPressione Enter para continuar"

 }

 "3" {

 Get-Service | Where-Object Status -eq "Stopped" |

 Sort-Object DisplayName |

 Format-Table Name, DisplayName, StartType -AutoSize

 Read-Host "`nPressione Enter para continuar"

 }

 "4" {

 Restart-ProblematicServices

 Read-Host "`nPressione Enter para continuar"

 }

 "5" {

 Export-ServiceConfiguration

 Read-Host "`nPressione Enter para continuar"

 }

 "6" {

 $busca = Read-Host "Digite o nome ou parte do nome do serviço"

 Get-Service | Where-Object {

 $_.Name -like "*$busca*" -or $_.DisplayName -like "*$busca*"

 } | Format-Table Name, DisplayName, Status, StartType -AutoSize

 Read-Host "`nPressione Enter para continuar"

 }

 "7" {

 $nomeServico = Read-Host "Digite o nome do serviço"

 $servico = Get-Service -Name $nomeServico -ErrorAction SilentlyContinue

 if ($servico) {

 Write-Host "`nServiço: $($servico.DisplayName)" -ForegroundColor
Cyan

 Write-Host "Status: $($servico.Status)" -ForegroundColor
$(if($servico.Status -eq 'Running'){'Green'}else{'Red'})

 Write-Host "`n1. Iniciar"

 Write-Host "2. Parar"

 Write-Host "3. Reiniciar"

 Write-Host "4. Voltar"

 $acao = Read-Host "`nEscolha uma ação"

 switch ($acao) {

 "1" { Start-Service -Name $nomeServico; Write-Host "Serviço iniciado"
-ForegroundColor Green }

 "2" { Stop-Service -Name $nomeServico; Write-Host "Serviço parado" -
ForegroundColor Yellow }

 "3" { Restart-Service -Name $nomeServico; Write-Host "Serviço
reiniciado" -ForegroundColor Green }

 }

 } else {

 Write-Host "Serviço não encontrado!" -ForegroundColor Red

 }

 Read-Host "`nPressione Enter para continuar"

 }

 }

 } while ($opcao -ne "8")

}

Executar menu

Show-ServiceMenu

5.2 Acesso Remoto e Gerenciamento de Múltiplos Computadores

5.2.1 PowerShell Remoting - Fundamentos

O que é PowerShell Remoting?

PowerShell Remoting permite executar comandos e scripts em computadores
remotos através do protocolo WS-Management (WinRM).

Características:

 Baseado em WS-Management (porta 5985 HTTP, 5986 HTTPS)

 Suporta autenticação Kerberos, NTLM, CredSSP

 Permite execução de comandos em múltiplos computadores
simultaneamente

 Suporta sessões persistentes e interativas

Habilitar PowerShell Remoting

No computador de destino (servidor/alvo)

Executar como Administrador

Enable-PSRemoting -Force

Configuração automática:

- Inicia serviço WinRM

- Configura tipo de inicialização como Automático

- Cria listener para aceitar requisições

- Cria regras de firewall

Verificar configuração

Test-WSMan

Verificar listeners

Get-WSManInstance -ResourceURI winrm/config/listener -Enumerate

Desabilitar (se necessário)

Disable-PSRemoting -Force

Configurar Clientes Confiáveis (Workgroup)

Em ambientes sem domínio Active Directory:

No computador cliente

Executar como Administrador

Adicionar hosts confiáveis (TrustedHosts)

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "192.168.1.100,Server01"
-Force

Adicionar todos (não recomendado em produção)

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "*" -Force

Adicionar mantendo valores existentes

$current = (Get-Item WSMan:\localhost\Client\TrustedHosts).Value

Set-Item WSMan:\localhost\Client\TrustedHosts -Value "$current,NovoServidor" -
Force

Verificar hosts confiáveis

Get-Item WSMan:\localhost\Client\TrustedHosts

Limpar lista

Clear-Item WSMan:\localhost\Client\TrustedHosts -Force

Configurar Firewall

Regras criadas automaticamente pelo Enable-PSRemoting:

- Windows Remote Management (HTTP-In)

- Windows Remote Management - Compatibility Mode (HTTP-In)

Verificar regras de firewall

Get-NetFirewallRule -Name "WINRM-HTTP-In-TCP*" | Select-Object Name,
Enabled, Direction

Criar regra manualmente (se necessário)

New-NetFirewallRule -Name "PSRemoting-In" `

 -DisplayName "PowerShell Remoting" `

 -Protocol TCP `

 -LocalPort 5985 `

 -Action Allow `

 -Direction Inbound `

 -Enabled True

Testar conectividade

Test-NetConnection -ComputerName "Server01" -Port 5985

5.2.2 Comandos Remotos

Invoke-Command - Executar Comandos Remotos

Características:

 Executa comandos em um ou mais computadores remotos

 Retorna objetos desserializados

 Suporta execução paralela

Sintaxe básica

Invoke-Command -ComputerName NomeComputador -ScriptBlock { comando }

Exemplo 1: Comando simples

Invoke-Command -ComputerName "Server01" -ScriptBlock {

 Get-Process | Select-Object -First 5

}

Exemplo 2: Com credenciais

$cred = Get-Credential

Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock {

 Get-Service

}

Exemplo 3: Múltiplos computadores

$computadores = "Server01", "Server02", "Server03"

Invoke-Command -ComputerName $computadores -ScriptBlock {

 Get-ComputerInfo | Select-Object CsName, OsName, OsVersion

}

Exemplo 4: Usando variáveis locais

$serviceName = "wuauserv"

Invoke-Command -ComputerName "Server01" -ScriptBlock {

 Get-Service -Name $using:serviceName

}

Exemplo 5: Executar script remoto

Invoke-Command -ComputerName "Server01" -FilePath
"C:\Scripts\MeuScript.ps1"

Exemplo 6: Passar argumentos

Invoke-Command -ComputerName "Server01" -FilePath "C:\Scripts\Script.ps1" -
ArgumentList "arg1", "arg2"

Exemplo 7: Execução assíncrona (job)

$job = Invoke-Command -ComputerName "Server01" -ScriptBlock {

 Get-EventLog -LogName System -Newest 1000

} -AsJob

Aguardar job

Wait-Job $job

Receive-Job $job

Exemplo 8: Com throttle (limitar execuções paralelas)

Invoke-Command -ComputerName $computadores -ScriptBlock {

 Get-Process

} -ThrottleLimit 10

Exemplo 9: Salvar saída em variável

$resultados = Invoke-Command -ComputerName "Server01" -ScriptBlock {

 Get-WinEvent -LogName Application -MaxEvents 100

}

$resultados | Where-Object LevelDisplayName -eq "Error"

Exemplo 10: Com timeout

Invoke-Command -ComputerName "Server01" -ScriptBlock {

 Start-Sleep -Seconds 60

} -SessionOption (New-PSSessionOption -IdleTimeout 30000)

Enter-PSSession e Exit-PSSession - Sessão Interativa

Iniciar sessão interativa

Enter-PSSession -ComputerName "Server01"

Com credenciais

$cred = Get-Credential

Enter-PSSession -ComputerName "Server01" -Credential $cred

Prompt mudará para: [Server01]: PS C:\>

Todos os comandos são executados no servidor remoto

Comandos de exemplo dentro da sessão:

Get-Process

Get-Service

cd C:\Logs

Get-ChildItem

Sair da sessão

Exit-PSSession

5.2.3 Sessões Persistentes (PSSessions)

PSSessions são sessões persistentes que mantêm estado entre comandos.

Vantagens:

 Melhor performance para múltiplos comandos

 Mantém variáveis e estado

 Reutilizável

 Suporta desconexão e reconexão

Criar sessão

$sessao = New-PSSession -ComputerName "Server01"

Ver informações da sessão

$sessao | Format-List *

Usar sessão com Invoke-Command

Invoke-Command -Session $sessao -ScriptBlock {

 $variavel = "Dados persistem na sessão"

 Get-Date

}

Reutilizar sessão (variável ainda existe)

Invoke-Command -Session $sessao -ScriptBlock {

 Write-Output $variavel # "Dados persistem na sessão"

}

Múltiplas sessões

$servidores = "Server01", "Server02", "Server03"

$sessoes = New-PSSession -ComputerName $servidores

Executar em todas as sessões

Invoke-Command -Session $sessoes -ScriptBlock {

 Get-Process | Measure-Object -Property WorkingSet -Sum

}

Fechar sessão específica

Remove-PSSession -Session $sessao

Fechar todas as sessões

Get-PSSession | Remove-PSSession

Sessões desconectadas (útil para tarefas longas)

$sessao = New-PSSession -ComputerName "Server01"

Executar comando e desconectar

Invoke-Command -Session $sessao -ScriptBlock {

 Start-Sleep -Seconds 300

} -InDisconnectedSession

Listar sessões desconectadas

Get-PSSession -ComputerName "Server01"

Reconectar

$sessao = Get-PSSession -ComputerName "Server01" -State Disconnected

Connect-PSSession -Session $sessao

Receber resultados

Receive-PSSession -Session $sessao

Opções de Sessão

Criar opções customizadas

$opcoes = New-PSSessionOption `

 -IdleTimeout 7200000 ` # 2 horas

 -OperationTimeout 3600000 ` # 1 hora

 -MaxConnectionRetryCount 5 `

 -NoMachineProfile `

 -Culture "pt-BR" `

 -UICulture "pt-BR"

Usar opções

$sessao = New-PSSession -ComputerName "Server01" -SessionOption $opcoes

Configuração padrão de sessão

$PSDefaultParameterValues = @{

 'New-PSSession:SessionOption' = $opcoes

}

5.2.4 Gerenciamento de Múltiplos Computadores

Exemplo 1: Coletar Informações de Múltiplos Servidores

Lista de servidores

$servidores = @(

 "Server01",

 "Server02",

 "Server03",

 "Server04",

 "Server05"

)

Criar sessões

Write-Host "Conectando aos servidores..." -ForegroundColor Yellow

$sessoes = New-PSSession -ComputerName $servidores -ErrorAction
SilentlyContinue

Verificar conexões bem-sucedidas

$conectados = $sessoes | Select-Object -ExpandProperty ComputerName

$falhas = Compare-Object $servidores $conectados |

 Where-Object SideIndicator -eq '<=' |

 Select-Object -ExpandProperty InputObject

if ($falhas) {

 Write-Host "Falha ao conectar:" -ForegroundColor Red

 $falhas | ForEach-Object { Write-Host " - $_" -ForegroundColor Red }

}

Coletar informações

Write-Host "`nColetando informações..." -ForegroundColor Yellow

$informacoes = Invoke-Command -Session $sessoes -ScriptBlock {

 $os = Get-CimInstance Win32_OperatingSystem

 $cs = Get-CimInstance Win32_ComputerSystem

 $cpu = Get-CimInstance Win32_Processor

 $discos = Get-CimInstance Win32_LogicalDisk -Filter "DriveType=3"

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 SO = $os.Caption

 Versao = $os.Version

 UltimoReboot = $os.LastBootUpTime

 Processador = $cpu.Name

 Nucleos = $cpu.NumberOfCores

 MemoriaGB = [math]::Round($cs.TotalPhysicalMemory / 1GB, 2)

 Discos = $discos | ForEach-Object {

 [PSCustomObject]@{

 Letra = $_.DeviceID

 TamanhoGB = [math]::Round($_.Size / 1GB, 2)

 LivreGB = [math]::Round($_.FreeSpace / 1GB, 2)

 UsoPct = [math]::Round((($_.Size - $_.FreeSpace) / $_.Size) * 100, 2)

 }

 }

 }

}

Exibir resultados

$informacoes | ForEach-Object {

 Write-Host "`n=== $($_.Computador) ===" -ForegroundColor Cyan

 Write-Host "SO: $($_.SO)" -ForegroundColor White

 Write-Host "Versão: $($_.Versao)" -ForegroundColor White

 Write-Host "Último Reboot: $($_.UltimoReboot)" -ForegroundColor White

 Write-Host "CPU: $($_.Processador) ($($_.Nucleos) núcleos)" -ForegroundColor
White

 Write-Host "Memória: $($_.MemoriaGB) GB" -ForegroundColor White

 Write-Host "Discos:" -ForegroundColor White

 $_.Discos | ForEach-Object {

 $cor = if ($_.UsoPct -gt 80) { 'Red' } elseif ($_.UsoPct -gt 70) { 'Yellow' } else {
'Green' }

 Write-Host " $($_.Letra) $($_.TamanhoGB) GB - Livre: $($_.LivreGB) GB
($($_.UsoPct)% usado)" -ForegroundColor $cor

 }

}

Exportar para CSV

$relatorio = foreach ($info in $informacoes) {

 foreach ($disco in $info.Discos) {

 [PSCustomObject]@{

 Computador = $info.Computador

 SO = $info.SO

 Versao = $info.Versao

 UltimoReboot = $info.UltimoReboot

 CPU = $info.Processador

 Nucleos = $info.Nucleos

 MemoriaGB = $info.MemoriaGB

 Disco = $disco.Letra

 DiscoTamanhoGB = $disco.TamanhoGB

 DiscoLivreGB = $disco.LivreGB

 DiscoUsoPct = $disco.UsoPct

 }

 }

}

$relatorio | Export-Csv "Inventario_Servidores_$(Get-Date -Format
'yyyyMMdd_HHmmss').csv" -NoTypeInformation

Fechar sessões

Remove-PSSession -Session $sessoes

Write-Host "`n✓ Coleta concluída!" -ForegroundColor Green

Exemplo 2: Executar Manutenção em Múltiplos Servidores

Arquivo: ManutencaoServidores.ps1

<#

.SYNOPSIS

 Executa tarefas de manutenção em múltiplos servidores

#>

param(

 [Parameter(Mandatory=$true)]

 [string[]]$Servidores,

 [switch]$LimparTemp,

 [switch]$AtualizarWindows,

 [switch]$ReiniciarServicos,

 [switch]$ColetarLogs,

 [string]$LogPath = ".\MaintenanceLogs"

)

Criar diretório de logs

if (-not (Test-Path $LogPath)) {

 New-Item -Path $LogPath -ItemType Directory | Out-Null

}

$logFile = Join-Path $LogPath "Manutencao_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

function Write-MaintenanceLog {

 param(

 [string]$Message,

 [string]$Level = "INFO"

)

 $timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"

 $logEntry = "[$timestamp] [$Level] $Message"

 $color = switch ($Level) {

 "INFO" { "White" }

 "SUCCESS" { "Green" }

 "WARNING" { "Yellow" }

 "ERROR" { "Red" }

 default { "Gray" }

 }

 Write-Host $logEntry -ForegroundColor $color

 $logEntry | Out-File -FilePath $logFile -Append -Encoding UTF8

}

Write-MaintenanceLog "===== INÍCIO DA MANUTENÇÃO ====="

Write-MaintenanceLog "Servidores alvo: $($Servidores -join ', ')"

Criar sessões

Write-MaintenanceLog "Estabelecendo conexões..." -Level "INFO"

$sessoes = @()

foreach ($servidor in $Servidores) {

 try {

 $sessao = New-PSSession -ComputerName $servidor -ErrorAction Stop

 $sessoes += $sessao

 Write-MaintenanceLog "✓ Conectado: $servidor" -Level "SUCCESS"

 }

 catch {

 Write-MaintenanceLog "✗ Falha ao conectar: $servidor - $_" -Level "ERROR"

 }

}

if ($sessoes.Count -eq 0) {

 Write-MaintenanceLog "Nenhuma conexão estabelecida. Encerrando." -Level
"ERROR"

 exit 1

}

Tarefa 1: Limpar arquivos temporários

if ($LimparTemp) {

 Write-MaintenanceLog "`n--- LIMPEZA DE ARQUIVOS TEMPORÁRIOS ---" -Level
"INFO"

 $resultados = Invoke-Command -Session $sessoes -ScriptBlock {

 $caminhos = @(

 "$env:TEMP",

 "C:\Windows\Temp",

 "C:\Windows\Prefetch"

)

 $totalRemovido = 0

 $erros = @()

 foreach ($caminho in $caminhos) {

 if (Test-Path $caminho) {

 try {

 $arquivos = Get-ChildItem -Path $caminho -Recurse -File -ErrorAction
SilentlyContinue |

 Where-Object LastWriteTime -lt (Get-Date).AddDays(-7)

 $tamanho = ($arquivos | Measure-Object -Property Length -Sum).Sum

 $totalRemovido += $tamanho

 $arquivos | Remove-Item -Force -ErrorAction SilentlyContinue

 }

 catch {

 $erros += "Erro em $caminho : $_"

 }

 }

 }

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 RemovidoMB = [math]::Round($totalRemovido / 1MB, 2)

 Erros = $erros

 }

 }

 foreach ($resultado in $resultados) {

 Write-MaintenanceLog "$($resultado.Computador): Removidos
$($resultado.RemovidoMB) MB" -Level "SUCCESS"

 if ($resultado.Erros) {

 foreach ($erro in $resultado.Erros) {

 Write-MaintenanceLog " $erro" -Level "WARNING"

 }

 }

 }

}

Tarefa 2: Reiniciar serviços

if ($ReiniciarServicos) {

 Write-MaintenanceLog "`n--- REINÍCIO DE SERVIÇOS ---" -Level "INFO"

 $servicosReiniciar = @("wuauserv", "BITS")

 $resultados = Invoke-Command -Session $sessoes -ScriptBlock {

 param($Servicos)

 $resultados = @()

 foreach ($nomeServico in $Servicos) {

 try {

 $servico = Get-Service -Name $nomeServico -ErrorAction Stop

 if ($servico.Status -eq 'Running') {

 Restart-Service -Name $nomeServico -Force -ErrorAction Stop

 $resultados += "$nomeServico reiniciado com sucesso"

 } else {

 $resultados += "$nomeServico não estava em execução"

 }

 }

 catch {

 $resultados += "Erro ao reiniciar $nomeServico : $_"

 }

 }

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 Resultados = $resultados

 }

 } -ArgumentList (,$servicosReiniciar)

 foreach ($resultado in $resultados) {

 Write-MaintenanceLog "$($resultado.Computador):" -Level "INFO"

 foreach ($msg in $resultado.Resultados) {

 Write-MaintenanceLog " $msg" -Level "SUCCESS"

 }

 }

}

Tarefa 3: Coletar logs

if ($ColetarLogs) {

 Write-MaintenanceLog "`n--- COLETA DE LOGS ---" -Level "INFO"

 $logsPath = Join-Path $LogPath "ServerLogs_$(Get-Date -Format
'yyyyMMdd_HHmmss')"

 New-Item -Path $logsPath -ItemType Directory | Out-Null

 foreach ($sessao in $sessoes) {

 $servidor = $sessao.ComputerName

 Write-MaintenanceLog "Coletando logs de $servidor..." -Level "INFO"

 try {

 $eventos = Invoke-Command -Session $sessao -ScriptBlock {

 Get-WinEvent -LogName System -MaxEvents 100 |

 Where-Object LevelDisplayName -in "Error", "Warning" |

 Select-Object TimeCreated, LevelDisplayName, ProviderName, Message

 }

 $arquivoLog = Join-Path $logsPath "$servidor`_EventLog.csv"

 $eventos | Export-Csv -Path $arquivoLog -NoTypeInformation

 Write-MaintenanceLog " ✓ Logs salvos: $arquivoLog" -Level "SUCCESS"

 }

 catch {

 Write-MaintenanceLog " ✗ Erro ao coletar logs: $_" -Level "ERROR"

 }

 }

}

Relatório final

Write-MaintenanceLog "`n--- RELATÓRIO FINAL ---" -Level "INFO"

$statusFinal = Invoke-Command -Session $sessoes -ScriptBlock {

 $os = Get-CimInstance Win32_OperatingSystem

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 Uptime = (Get-Date) - $os.LastBootUpTime

 MemoriaLivrePct = [math]::Round(($os.FreePhysicalMemory /
$os.TotalVisibleMemorySize) * 100, 2)

 ProcessosAtivos = (Get-Process).Count

 }

}

foreach ($status in $statusFinal) {

 Write-MaintenanceLog "$($status.Computador):" -Level "INFO"

 Write-MaintenanceLog " Uptime: $($status.Uptime.Days) dias,
$($status.Uptime.Hours) horas" -Level "INFO"

 Write-MaintenanceLog " Memória Livre: $($status.MemoriaLivrePct)%" -Level
"INFO"

 Write-MaintenanceLog " Processos Ativos: $($status.ProcessosAtivos)" -Level
"INFO"

}

Fechar sessões

Remove-PSSession -Session $sessoes

Write-MaintenanceLog "`n===== MANUTENÇÃO CONCLUÍDA =====" -Level
"SUCCESS"

Write-MaintenanceLog "Log completo salvo em: $logFile" -Level "INFO"

Uso:

Executar todas as tarefas

.\ManutencaoServidores.ps1 -Servidores "Server01", "Server02" -LimparTemp -
ReiniciarServicos -ColetarLogs

Apenas limpeza

.\ManutencaoServidores.ps1 -Servidores "Server01", "Server02", "Server03" -
LimparTemp

Coletar logs de todos os servidores

.\ManutencaoServidores.ps1 -Servidores (Get-Content .\servidores.txt) -
ColetarLogs

5.2.5 Gerenciamento Remoto com CIM/WMI

CIM (Common Information Model) é o sucessor do WMI e funciona nativamente
com PowerShell Remoting.

Criar sessão CIM

$sessaoCim = New-CimSession -ComputerName "Server01"

Usar sessão CIM

Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $sessaoCim

Múltiplas sessões CIM

$sessoesCim = New-CimSession -ComputerName "Server01", "Server02",
"Server03"

Query em múltiplos servidores

Get-CimInstance -ClassName Win32_Service -Filter "State='Running'" -
CimSession $sessoesCim |

 Select-Object PSComputerName, Name, DisplayName, State

Invocar método CIM

$servico = Get-CimInstance -ClassName Win32_Service -Filter
"Name='wuauserv'" -CimSession $sessaoCim

Invoke-CimMethod -InputObject $servico -MethodName StopService

Fechar sessões

Remove-CimSession -CimSession $sessoesCim

5.2.6 Tratamento de Erros em Operações Remotas

Capturar erros de conexão

$servidores = "Server01", "ServerInexistente", "Server02"

$sessoes = @()

foreach ($servidor in $servidores) {

 try {

 $sessao = New-PSSession -ComputerName $servidor -ErrorAction Stop

 $sessoes += $sessao

 Write-Host "✓ Conectado: $servidor" -ForegroundColor Green

 }

 catch {

 Write-Host "✗ Falha: $servidor - $($_.Exception.Message)" -ForegroundColor
Red

 }

}

Tratamento durante Invoke-Command

$resultados = Invoke-Command -ComputerName $servidores -ScriptBlock {

 try {

 Get-Service -Name "ServicoInexistente" -ErrorAction Stop

 }

 catch {

 [PSCustomObject]@{

 Computador = $env:COMPUTERNAME

 Erro = $_.Exception.Message

 }

 }

} -ErrorAction SilentlyContinue -ErrorVariable errosRemotOs

Analisar erros

if ($errosRemotos) {

 Write-Host "Erros encontrados:" -ForegroundColor Red

 $errosRemotos | ForEach-Object {

 Write-Host " $($_.TargetObject): $($_.Exception.Message)" -ForegroundColor
Red

 }

}

6. MELHORES PRÁTICAS E SEGURANÇA

6.1 Gestão de Credenciais e Segurança em Scripts

6.1.1 Fundamentos de Segurança no PowerShell

Por Que a Segurança é Crítica?

Scripts PowerShell frequentemente:

 Acessam recursos críticos do sistema

 Conectam a servidores e bancos de dados

 Manipulam dados sensíveis

 Executam com privilégios elevados

 São compartilhados entre equipes

Princípios fundamentais:

1. Least Privilege: Executar com privilégios mínimos necessários

2. Defense in Depth: Múltiplas camadas de segurança

3. Never Trust User Input: Validar todas as entradas

4. Secure by Default: Configurações seguras por padrão

5. Audit and Monitor: Registrar e monitorar atividades

6.1.2 Gestão de Credenciais

 Práticas INSEGURAS (Nunca Fazer)

 NUNCA: Hardcode de senha em texto plano

$username = "admin"

$password = "SenhaSecreta123"

 NUNCA: Senha em string

$senha = "SenhaSecreta123"

$securePassword = ConvertTo-SecureString $senha -AsPlainText -Force

 NUNCA: Credenciais em comentários

Usuário: admin

Senha: MinhaSenha123

 NUNCA: Variáveis de ambiente para senhas

$env:DB_PASSWORD = "SenhaDoDb123"

 NUNCA: Parâmetros de linha de comando com senha

.\script.ps1 -Password "MinhaSenha"

脥� Get-Credential - Solicitação Interativa

Método seguro: solicitar credenciais em tempo de execução

$cred = Get-Credential

Com nome de usuário pré-preenchido

$cred = Get-Credential -UserName "DOMINIO\Usuario"

Com mensagem customizada

$cred = Get-Credential -Message "Digite suas credenciais para acessar o servidor
SQL"

Usar credencial

Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock {

 Get-Process

}

Extrair componentes (quando absolutamente necessário)

$username = $cred.UserName

$password = $cred.GetNetworkCredential().Password #  Expõe senha em texto
plano

脥� SecureString - Armazenamento Seguro em Memória

Criar SecureString

$securePassword = ConvertTo-SecureString "MinhaSenh@" -AsPlainText -Force

Criar PSCredential com SecureString

$username = "DOMINIO\Usuario"

$cred = New-Object System.Management.Automation.PSCredential($username,
$securePassword)

Converter SecureString para texto plano (quando necessário)

$BSTR =
[System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($securePasswor
d)

$plainPassword =
[System.Runtime.InteropServices.Marshal]::PtrToStringAuto($BSTR)

[System.Runtime.InteropServices.Marshal]::ZeroFreeBSTR($BSTR) # Limpar
memória

Verificar se SecureString está vazia

if ($securePassword.Length -eq 0) {

 Write-Host "Senha vazia"

}

脥� Armazenamento Persistente de Credenciais

Método 1: Export/Import-Clixml (Vinculado ao Usuário e Máquina)

Salvar credencial

$cred = Get-Credential

$cred | Export-Clixml -Path "C:\Credentials\mycred.xml"

Carregar credencial

$cred = Import-Clixml -Path "C:\Credentials\mycred.xml"

 IMPORTANTE: O arquivo só pode ser descriptografado:

- Pelo mesmo usuário

- Na mesma máquina

- Com a mesma instalação do Windows

Exemplo prático: Script que usa credencial salva

$credPath = "C:\Credentials\sqlcred.xml"

if (-not (Test-Path $credPath)) {

 Write-Host "Primeira execução - configure suas credenciais:" -ForegroundColor
Yellow

 $cred = Get-Credential -Message "Credenciais SQL Server"

 $cred | Export-Clixml -Path $credPath

} else {

 $cred = Import-Clixml -Path $credPath

}

Usar credencial

Invoke-Sqlcmd -ServerInstance "SQLServer" -Credential $cred -Query "SELECT
@@VERSION"

Método 2: ConvertFrom-SecureString / ConvertTo-SecureString (com Chave)

Gerar chave AES (256-bit)

$key = New-Object Byte[] 32

[Security.Cryptography.RNGCryptoServiceProvider]::Create().GetBytes($key)

Salvar chave em arquivo seguro

$key | Out-File "C:\Secure\aes.key" -Encoding Byte

Criptografar senha com chave

$securePassword = Read-Host "Digite a senha" -AsSecureString

$encryptedPassword = $securePassword | ConvertFrom-SecureString -Key $key

Salvar senha criptografada

$encryptedPassword | Out-File "C:\Secure\password.txt"

===== Em outro script ou execução =====

Carregar chave

$key = Get-Content "C:\Secure\aes.key" -Encoding Byte

Carregar e descriptografar senha

$encryptedPassword = Get-Content "C:\Secure\password.txt"

$securePassword = $encryptedPassword | ConvertTo-SecureString -Key $key

Criar credencial

$username = "DOMINIO\Usuario"

$cred = New-Object System.Management.Automation.PSCredential($username,
$securePassword)

 IMPORTANTE: Proteja o arquivo de chave com ACLs adequadas!

Proteger arquivo de chave com ACLs:

Remover herança e permissões existentes

$acl = Get-Acl "C:\Secure\aes.key"

$acl.SetAccessRuleProtection($true, $false)

Adicionar permissão apenas para o usuário atual

$rule = New-Object System.Security.AccessControl.FileSystemAccessRule(

 $env:USERNAME,

 "FullControl",

 "Allow"

)

$acl.AddAccessRule($rule)

Aplicar ACL

Set-Acl "C:\Secure\aes.key" -AclObject $acl

Verificar permissões

Get-Acl "C:\Secure\aes.key" | Format-List

脥� Windows Credential Manager (CredentialManager Module)

Instalar módulo (se não estiver instalado)

Install-Module -Name CredentialManager -Force

Salvar credencial no Credential Manager

New-StoredCredential -Target "MeuServidor" -UserName "DOMINIO\Usuario" -
Password "MinhaSenh@" -Persist LocalMachine

Recuperar credencial

$cred = Get-StoredCredential -Target "MeuServidor"

Listar credenciais armazenadas

Get-StoredCredential

Remover credencial

Remove-StoredCredential -Target "MeuServidor"

Exemplo prático

function Get-SafeCredential {

 param(

 [string]$Target,

 [string]$Message = "Digite suas credenciais"

)

 try {

 # Tentar obter do Credential Manager

 $cred = Get-StoredCredential -Target $Target -ErrorAction Stop

 if ($cred) {

 Write-Host "Credencial recuperada do Credential Manager" -
ForegroundColor Green

 return $cred

 }

 }

 catch {

 # Se não existir, solicitar e salvar

 Write-Host "Credencial não encontrada. Configurando..." -ForegroundColor
Yellow

 $cred = Get-Credential -Message $Message

 if ($cred) {

 New-StoredCredential -Target $Target `

 -UserName $cred.UserName `

 -Password $cred.GetNetworkCredential().Password `

 -Persist LocalMachine

 Write-Host "Credencial salva no Credential Manager" -ForegroundColor
Green

 return $cred

 }

 }

 return $null

}

Usar função

$cred = Get-SafeCredential -Target "SQLServer" -Message "Credenciais SQL"

脥� Azure Key Vault (Ambientes Enterprise)

Instalar módulo Azure

Install-Module -Name Az.KeyVault -Force

Conectar ao Azure

Connect-AzAccount

Obter segredo do Key Vault

$secretName = "DatabasePassword"

$vaultName = "MyKeyVault"

$secret = Get-AzKeyVaultSecret -VaultName $vaultName -Name $secretName

$securePassword = $secret.SecretValue

Criar credencial

$username = Get-AzKeyVaultSecret -VaultName $vaultName -Name
"DatabaseUser"

$cred = New-Object System.Management.Automation.PSCredential(

 $username.SecretValueText,

 $securePassword

)

Exemplo: Função para obter credencial do Key Vault

function Get-KeyVaultCredential {

 param(

 [Parameter(Mandatory=$true)]

 [string]$VaultName,

 [Parameter(Mandatory=$true)]

 [string]$UsernameSecret,

 [Parameter(Mandatory=$true)]

 [string]$PasswordSecret

)

 try {

 $username = (Get-AzKeyVaultSecret -VaultName $VaultName -Name
$UsernameSecret).SecretValueText

 $password = (Get-AzKeyVaultSecret -VaultName $VaultName -Name
$PasswordSecret).SecretValue

 return New-Object
System.Management.Automation.PSCredential($username, $password)

 }

 catch {

 Write-Error "Erro ao obter credencial do Key Vault: $_"

 return $null

 }

}

Usar função

$cred = Get-KeyVaultCredential -VaultName "MyVault" -UsernameSecret "DBUser"
-PasswordSecret "DBPass"

6.1.3 Validação e Sanitização de Entrada

Validação de Parâmetros

Validações de parâmetros

param(

 # Não pode ser nulo ou vazio

 [Parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$Nome,

 # Comprimento da string

 [ValidateLength(8, 50)]

 [string]$Senha,

 # Intervalo numérico

 [ValidateRange(1, 100)]

 [int]$Porcentagem,

 # Conjunto de valores permitidos

 [ValidateSet("Dev", "QA", "Prod")]

 [string]$Ambiente,

 # Padrão regex

 [ValidatePattern("^[A-Z]{2}\d{4}$")]

 [string]$Codigo,

 # Script de validação customizado

 [ValidateScript({

 Test-Path $_ -PathType Container

 })]

 [string]$Caminho,

 # Validação de contagem em arrays

 [ValidateCount(1, 10)]

 [string[]]$Servidores

)

Exemplo: Validação de IP

param(

 [ValidatePattern("^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)$")]

 [string]$EnderecoIP

)

Exemplo: Validação de email

param(

 [ValidatePattern("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$")]

 [string]$Email

)

Exemplo: Validação de CPF

param(

 [ValidatePattern("^\d{3}\.\d{3}\.\d{3}-\d{2}$")]

 [string]$CPF

)

Sanitização de Entrada

Função para sanitizar entrada

function ConvertTo-SafeString {

 param(

 [string]$InputString,

 [switch]$AllowSpaces

)

 # Remover caracteres perigosos

 $safe = $InputString -replace '[^\w\s-]', ''

 if (-not $AllowSpaces) {

 $safe = $safe -replace '\s', ''

 }

 # Limitar tamanho

 if ($safe.Length -gt 100) {

 $safe = $safe.Substring(0, 100)

 }

 return $safe.Trim()

}

Uso

$userInput = Read-Host "Digite o nome do arquivo"

$safeFilename = ConvertTo-SafeString -InputString $userInput

New-Item -Path "C:\Files\$safeFilename.txt" -ItemType File

Sanitizar caminhos

function Test-SafePath {

 param([string]$Path)

 # Verificar caracteres inválidos

 $invalidChars = [System.IO.Path]::GetInvalidPathChars()

 foreach ($char in $invalidChars) {

 if ($Path.Contains($char)) {

 throw "Caminho contém caractere inválido: $char"

 }

 }

 # Verificar path traversal

 if ($Path -match '\.\.|~') {

 throw "Caminho contém sequência suspeita"

 }

 # Resolver para caminho absoluto

 $resolvedPath = [System.IO.Path]::GetFullPath($Path)

 # Verificar se está dentro do diretório permitido

 $allowedBase = "C:\AllowedDirectory"

 if (-not $resolvedPath.StartsWith($allowedBase)) {

 throw "Caminho fora do diretório permitido"

 }

 return $resolvedPath

}

Sanitizar SQL (prevenção de SQL Injection)

function Invoke-SafeSqlQuery {

 param(

 [string]$Query,

 [hashtable]$Parameters

)

 # NUNCA concatenar strings diretamente

 #  ERRADO: "SELECT * FROM Users WHERE Name = '$userName'"

 # 脥� CORRETO: Usar parâmetros

 $connection = New-Object
System.Data.SqlClient.SqlConnection($connectionString)

 $command = $connection.CreateCommand()

 $command.CommandText = $Query

 foreach ($param in $Parameters.GetEnumerator()) {

 $command.Parameters.AddWithValue($param.Key, $param.Value) | Out-Null

 }

 # Executar query...

}

Uso

Invoke-SafeSqlQuery -Query "SELECT * FROM Users WHERE Name = @Name" -
Parameters @{

 "@Name" = $userName

}

6.1.4 Execution Policy e Script Signing

Execution Policy

Verificar política atual

Get-ExecutionPolicy

Get-ExecutionPolicy -List

Definir políticas por escopo

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

Set-ExecutionPolicy -ExecutionPolicy AllSigned -Scope LocalMachine

Bypass temporário (apenas para sessão)

powershell.exe -ExecutionPolicy Bypass -File script.ps1

Níveis de Execution Policy:

- Restricted: Não executa scripts (padrão Windows cliente)

- AllSigned: Apenas scripts assinados

- RemoteSigned: Scripts locais livres, remotos assinados (recomendado)

- Unrestricted: Todos os scripts (avisa para remotos)

- Bypass: Nenhuma verificação

- Undefined: Remove política do escopo

Assinatura Digital de Scripts

Criar certificado de assinatura de código (desenvolvimento):

Criar certificado self-signed (desenvolvimento apenas)

$cert = New-SelfSignedCertificate `

 -Type CodeSigningCert `

 -Subject "CN=PowerShell Code Signing" `

 -CertStoreLocation "Cert:\CurrentUser\My" `

 -KeyExportPolicy Exportable

Mover para Trusted Publishers

$store = New-Object System.Security.Cryptography.X509Certificates.X509Store(

 "TrustedPublisher",

 "CurrentUser"

)

$store.Open("ReadWrite")

$store.Add($cert)

$store.Close()

Mover para Root

$store = New-Object System.Security.Cryptography.X509Certificates.X509Store(

 "Root",

 "CurrentUser"

)

$store.Open("ReadWrite")

$store.Add($cert)

$store.Close()

Assinar script:

Obter certificado

$cert = Get-ChildItem Cert:\CurrentUser\My -CodeSigningCert | Select-Object -
First 1

Assinar script

Set-AuthenticodeSignature -FilePath "C:\Scripts\MeuScript.ps1" -Certificate $cert

Verificar assinatura

Get-AuthenticodeSignature -FilePath "C:\Scripts\MeuScript.ps1"

Função para assinar todos os scripts em diretório

function Sign-AllScripts {

 param(

 [Parameter(Mandatory=$true)]

 [string]$Path,

 [Parameter(Mandatory=$true)]

 [System.Security.Cryptography.X509Certificates.X509Certificate2]$Certificate

)

 Get-ChildItem -Path $Path -Filter "*.ps1" -Recurse | ForEach-Object {

 Write-Host "Assinando: $($_.Name)" -ForegroundColor Yellow

 try {

 Set-AuthenticodeSignature -FilePath $_.FullName -Certificate $Certificate

 Write-Host " ✓ Assinado com sucesso" -ForegroundColor Green

 }

 catch {

 Write-Host " ✗ Erro: $_" -ForegroundColor Red

 }

 }

}

Usar função

$cert = Get-ChildItem Cert:\CurrentUser\My -CodeSigningCert | Select-Object -
First 1

Sign-AllScripts -Path "C:\Scripts" -Certificate $cert

6.1.5 Logging e Auditoria

Transcript - Registro de Sessão

Iniciar transcript

Start-Transcript -Path "C:\Logs\Session_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

Comandos executados...

Get-Process

Get-Service

Parar transcript

Stop-Transcript

Transcript automático em script

$transcriptPath = "C:\Logs\Script_$(Get-Date -Format 'yyyyMMdd_HHmmss').log"

try {

 Start-Transcript -Path $transcriptPath -ErrorAction Stop

 # Código do script...

 Write-Host "Executando operações..."

 Stop-Transcript

}

catch {

 if ((Get-Command Stop-Transcript -ErrorAction SilentlyContinue)) {

 Stop-Transcript

 }

 throw

}

Script Block Logging (Auditoria Nativa)

Habilitar Script Block Logging via Group Policy ou Registry

Via Registry (requer reinício)

$regPath =
"HKLM:\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging"

if (-not (Test-Path $regPath)) {

 New-Item -Path $regPath -Force | Out-Null

}

New-ItemProperty -Path $regPath -Name "EnableScriptBlockLogging" -Value 1 -
PropertyType DWORD -Force

Visualizar logs (Event Viewer)

Get-WinEvent -LogName "Microsoft-Windows-PowerShell/Operational" |

 Where-Object Id -eq 4104 |

 Select-Object -First 10 TimeCreated, Message

Sistema de Logging Customizado

Sistema completo de logging

enum LogLevel {

 DEBUG = 0

 INFO = 1

 WARNING = 2

 ERROR = 3

 CRITICAL = 4

}

class Logger {

 [string]$LogPath

 [string]$LogFile

 [LogLevel]$MinLevel

 [bool]$ConsoleOutput

 [bool]$FileOutput

 Logger([string]$logPath) {

 $this.LogPath = $logPath

 $this.LogFile = "Log_$(Get-Date -Format 'yyyyMMdd').log"

 $this.MinLevel = [LogLevel]::INFO

 $this.ConsoleOutput = $true

 $this.FileOutput = $true

 # Criar diretório se não existir

 if (-not (Test-Path $this.LogPath)) {

 New-Item -Path $this.LogPath -ItemType Directory -Force | Out-Null

 }

 }

 [void] Write([string]$message, [LogLevel]$level, [string]$source) {

 if ($level -lt $this.MinLevel) {

 return

 }

 $timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss.Ưf"

 $levelStr = $level.ToString().PadRight(8)

 $logEntry = "[$timestamp] [$levelStr] [$source] $message"

 # Console output

 if ($this.ConsoleOutput) {

 $color = switch ($level) {

 ([LogLevel]::DEBUG) { "Gray" }

 ([LogLevel]::INFO) { "White" }

 ([LogLevel]::WARNING) { "Yellow" }

 ([LogLevel]::ERROR) { "Red" }

 ([LogLevel]::CRITICAL) { "Magenta" }

 }

 Write-Host $logEntry -ForegroundColor $color

 }

 # File output

 if ($this.FileOutput) {

 $logFilePath = Join-Path $this.LogPath $this.LogFile

 $logEntry | Out-File -FilePath $logFilePath -Append -Encoding UTF8

 }

 }

 [void] Debug([string]$message, [string]$source = "SYSTEM") {

 $this.Write($message, [LogLevel]::DEBUG, $source)

 }

 [void] Info([string]$message, [string]$source = "SYSTEM") {

 $this.Write($message, [LogLevel]::INFO, $source)

 }

 [void] Warning([string]$message, [string]$source = "SYSTEM") {

 $this.Write($message, [LogLevel]::WARNING, $source)

 }

 [void] Error([string]$message, [string]$source = "SYSTEM") {

 $this.Write($message, [LogLevel]::ERROR, $source)

 }

 [void] Critical([string]$message, [string]$source = "SYSTEM") {

 $this.Write($message, [LogLevel]::CRITICAL, $source)

 }

 [void] Exception([System.Management.Automation.ErrorRecord]$exception,
[string]$source = "SYSTEM") {

 $message = "Exception: $($exception.Exception.Message)`n"

 $message += "ScriptStackTrace: $($exception.ScriptStackTrace)"

 $this.Write($message, [LogLevel]::ERROR, $source)

 }

}

Uso do Logger

$logger = [Logger]::new("C:\Logs\MeuApp")

$logger.MinLevel = [LogLevel]::DEBUG

$logger.Info("Aplicação iniciada")

$logger.Debug("Valor da variável X: 10")

$logger.Warning("Conexão lenta detectada")

try {

 Get-Item "C:\arquivo_inexistente.txt" -ErrorAction Stop

}

catch {

 $logger.Exception($_, "FILESYSTEM")

}

$logger.Critical("Sistema indisponível")

6.1.6 Segurança em Remoting

Configuração Segura de PSRemoting

Configurar PSRemoting com HTTPS

winrm quickconfig -transport:https

Criar certificado SSL para WinRM

$cert = New-SelfSignedCertificate -DnsName $env:COMPUTERNAME -
CertStoreLocation Cert:\LocalMachine\My

Configurar listener HTTPS

New-Item -Path WSMan:\Localhost\Listener -Transport HTTPS -Address * -
CertificateThumbPrint $cert.Thumbprint -Force

Verificar listeners

Get-WSManInstance -ResourceURI winrm/config/listener -Enumerate

Configurar autenticação

Set-Item WSMan:\localhost\Service\Auth\Basic -Value $false

Set-Item WSMan:\localhost\Service\Auth\Kerberos -Value $true

Configurar criptografia

Set-Item WSMan:\localhost\Service\AllowUnencrypted -Value $false

Just Enough Administration (JEA)

JEA permite delegar privilégios administrativos específicos sem dar acesso
completo.

Criar configuração de sessão JEA

$jeaConfigPath = "C:\JEA"

New-Item -Path $jeaConfigPath -ItemType Directory -Force

Criar arquivo de capacidades de role (Role Capability)

$roleCapabilityPath = Join-Path $jeaConfigPath "RestartService.psrc"

@{

 GUID = [Guid]::NewGuid().ToString()

 Author = 'Admin'

 Description = 'Permite reiniciar serviços específicos'

 ModulesToImport = 'Microsoft.PowerShell.Management'

 VisibleCmdlets = @(

 @{

 Name = 'Restart-Service'

 Parameters = @{

 Name = 'Name'

 ValidateSet = 'wuauserv', 'BITS', 'Spooler'

 }

 },

 'Get-Service'

)

 VisibleFunctions = @()

 VisibleExternalCommands = @()

} | Export-PSRoleCapabilityFile -Path $roleCapabilityPath

Criar arquivo de configuração de sessão

$sessionConfigPath = Join-Path $jeaConfigPath "RestartServiceConfig.pssc"

@{

 SchemaVersion = '2.0.0.0'

 GUID = [Guid]::NewGuid().ToString()

 Author = 'Admin'

 Description = 'Endpoint JEA para reiniciar serviços'

 SessionType = 'RestrictedRemoteServer'

 TranscriptDirectory = 'C:\JEATranscripts'

 RunAsVirtualAccount = $true

 RoleDefinitions = @{

 'DOMINIO\ServiceOperators' = @{

 RoleCapabilityFiles = $roleCapabilityPath

 }

 }

} | Export-PSSessionConfigurationFile -Path $sessionConfigPath

Registrar configuração

Register-PSSessionConfiguration -Name "RestartService" -Path
$sessionConfigPath -Force

Usuários do grupo ServiceOperators podem conectar:

Enter-PSSession -ComputerName localhost -ConfigurationName RestartService

Dentro da sessão, apenas comandos permitidos funcionam

Get-Service wuauserv

Restart-Service -Name wuauserv # 脥� Permitido

Stop-Process -Name notepad #  Negado

6.1.7 Checklist de Segurança

Template de script seguro

<#

.SYNOPSIS

 [Descrição do script]

.NOTES

 Autor: [Nome]

 Data: [Data]

 Versão: 1.0

 Requer: PowerShell 5.1+

 Execução: Requer privilégios elevados

#>

[CmdletBinding()]

param(

 # Parâmetros com validação adequada

 [Parameter(Mandatory=$true)]

 [ValidateNotNullOrEmpty()]

 [string]$Parametro1,

 [ValidateSet("Valor1", "Valor2")]

 [string]$Parametro2 = "Valor1"

)

Requer versão mínima do PowerShell

#Requires -Version 5.1

Requer execução como administrador (se necessário)

#Requires -RunAsAdministrator

Strict mode (boas práticas)

Set-StrictMode -Version Latest

$ErrorActionPreference = "Stop"

Logging

$logPath = "C:\Logs\MeuScript"

if (-not (Test-Path $logPath)) {

 New-Item -Path $logPath -ItemType Directory -Force | Out-Null

}

$transcriptFile = Join-Path $logPath "Transcript_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

Start-Transcript -Path $transcriptFile

try {

 # Validar ambiente

 Write-Host "Validando ambiente..." -ForegroundColor Yellow

 if (-not (Test-Path "C:\RequiredPath")) {

 throw "Diretório obrigatório não encontrado"

 }

 # Obter credenciais de forma segura

 $credPath = "C:\Secure\credentials.xml"

 if (Test-Path $credPath) {

 $cred = Import-Clixml -Path $credPath

 } else {

 $cred = Get-Credential -Message "Digite suas credenciais"

 $cred | Export-Clixml -Path $credPath

 }

 # Validar credenciais

 if (-not $cred) {

 throw "Credenciais não fornecidas"

 }

 # Código principal do script

 Write-Host "Executando operações..." -ForegroundColor Green

 # ... código aqui ...

 Write-Host "Script concluído com sucesso!" -ForegroundColor Green

}

catch {

 Write-Host "ERRO: $($_.Exception.Message)" -ForegroundColor Red

 Write-Host "Linha: $($_.InvocationInfo.ScriptLineNumber)" -ForegroundColor
Red

 Write-Host "StackTrace: $($_.ScriptStackTrace)" -ForegroundColor Red

 exit 1

}

finally {

 # Limpeza

 Stop-Transcript

 # Limpar variáveis sensíveis

 if ($cred) {

 Remove-Variable -Name cred -ErrorAction SilentlyContinue

 }

}

6.2 Padronização e Documentação

6.2.1 Convenções de Nomenclatura

Convenções PowerShell

脥� Cmdlets: Verbo-Substantivo (PascalCase)

Get-Process

Set-Location

New-Item

脥� Funções: Verbo-Substantivo (PascalCase)

function Get-UserInformation { }

function Set-ServerConfiguration { }

脥� Variáveis: camelCase ou PascalCase

$userName = "João"

$serverList = @()

$UserName = "João" # Também aceitável

脥� Constantes: UPPER_CASE ou PascalCase

$MAX_RETRIES = 5

$ConnectionTimeout = 30

脥� Parâmetros: PascalCase

param(

 [string]$ComputerName,

 [int]$RetryCount

)

脥� Booleanos: Prefixo Is/Has/Should

$isEnabled = $true

$hasAccess = $false

$shouldContinue = $true

 Evitar abreviações não óbvias

$usrNm = "João" #  Ruim

$userName = "João" # 脥� Bom

 Evitar underscores em funções públicas

function Get_User_Info { } #  Ruim

function Get-UserInfo { } # 脥� Bom

Verbos Aprovados

Sempre usar verbos aprovados

Get-Verb | Sort-Object Verb

Grupos principais:

Common: Get, Set, New, Remove, Add, Clear, Copy, Move, etc.

Data: Import, Export, Convert, Select, Compare, etc.

Lifecycle: Start, Stop, Restart, Suspend, Resume, etc.

Diagnostic: Debug, Test, Trace, Measure, etc.

Communications: Connect, Disconnect, Read, Write, Send, Receive, etc.

Verificar se verbo é aprovado

Get-Verb -Verb "Fetch" # Não é aprovado - usar Get

Get-Verb -Verb "Get" # 脥� Aprovado

6.2.2 Estrutura de Scripts e Módulos

Estrutura de Script Profissional

<#

.SYNOPSIS

 Breve descrição de uma linha do que o script faz

.DESCRIPTION

 Descrição detalhada e completa do script, incluindo:

 - O que ele faz

 - Como funciona

 - Requisitos

 - Dependências

.PARAMETER ComputerName

 Nome ou endereço IP do computador alvo.

 Aceita múltiplos valores via pipeline.

.PARAMETER Credential

 Credenciais para conexão remota.

 Se não fornecido, usa credenciais do usuário atual.

.PARAMETER LogPath

 Caminho para salvar logs.

 Padrão: C:\Logs\ScriptName

.EXAMPLE

 .\MeuScript.ps1 -ComputerName "Server01"

 Executa o script no servidor Server01 usando credenciais atuais.

.EXAMPLE

 .\MeuScript.ps1 -ComputerName "Server01" -Credential (Get-Credential) -
LogPath "D:\Logs"

 Executa o script com credenciais específicas e caminho de log customizado.

.EXAMPLE

 Get-Content servers.txt | .\MeuScript.ps1

 Processa lista de servidores via pipeline.

.INPUTS

 System.String

 Aceita nomes de computadores via pipeline.

.OUTPUTS

 PSCustomObject

 Retorna objeto com resultados da operação.

.NOTES

 Arquivo: MeuScript.ps1

 Autor: João Silva <joao.silva@empresa.com>

 Data Criação: 15/10/2025

 Última Modificação: 15/10/2025

 Versão: 1.0.0

 Requisitos:

 - PowerShell 5.1 ou superior

 - Módulo ActiveDirectory

 - Permissões de administrador

 Changelog:

 v1.0.0 (15/10/2025) - Versão inicial

.LINK

 https://docs.empresa.com/scripts/meuscript

.LINK

 https://github.com/empresa/powershell-scripts

#>

#Requires -Version 5.1

#Requires -Modules ActiveDirectory

#Requires -RunAsAdministrator

[CmdletBinding(

 SupportsShouldProcess = $true,

 ConfirmImpact = 'Medium'

)]

param(

 [Parameter(

 Mandatory = $true,

 Position = 0,

 ValueFromPipeline = $true,

 ValueFromPipelineByPropertyName = $true,

 HelpMessage = "Nome do computador alvo"

)]

 [ValidateNotNullOrEmpty()]

 [Alias("CN", "Server")]

 [string[]]$ComputerName,

 [Parameter(Mandatory = $false)]

 [System.Management.Automation.PSCredential]

 [System.Management.Automation.Credential()]

 $Credential = [System.Management.Automation.PSCredential]::Empty,

 [Parameter(Mandatory = $false)]

 [ValidateScript({

 if (-not (Test-Path $_)) {

 New-Item -Path $_ -ItemType Directory -Force | Out-Null

 }

 $true

 })]

 [string]$LogPath = "C:\Logs\MeuScript"

)

begin {

 # Configurações iniciais

 Set-StrictMode -Version Latest

 $ErrorActionPreference = "Stop"

 # Variáveis do script

 $script:StartTime = Get-Date

 $script:TotalProcessed = 0

 $script:SuccessCount = 0

 $script:FailureCount = 0

 # Inicializar logging

 $logFile = Join-Path $LogPath "Log_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

 Start-Transcript -Path $logFile

 Write-Verbose "Script iniciado em: $script:StartTime"

 Write-Verbose "Parâmetros: ComputerName=$ComputerName,
LogPath=$LogPath"

 # Funções internas

 function Write-Log {

 param(

 [string]$Message,

 [ValidateSet("INFO", "WARNING", "ERROR", "SUCCESS")]

 [string]$Level = "INFO"

)

 $timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"

 $color = switch ($Level) {

 "INFO" { "White" }

 "WARNING" { "Yellow" }

 "ERROR" { "Red" }

 "SUCCESS" { "Green" }

 }

 $logMessage = "[$timestamp] [$Level] $Message"

 Write-Host $logMessage -ForegroundColor $color

 }

 Write-Log "===== INÍCIO DA EXECUÇÃO =====" -Level "INFO"

}

process {

 foreach ($computer in $ComputerName) {

 $script:TotalProcessed++

 Write-Log "Processando: $computer" -Level "INFO"

 # Verificar se deve processar (WhatIf)

 if ($PSCmdlet.ShouldProcess($computer, "Processar computador")) {

 try {

 # Código principal aqui

 # Simulação de processamento

 Write-Verbose "Conectando a $computer..."

 $result = Test-Connection -ComputerName $computer -Count 1 -Quiet

 if ($result) {

 Write-Log "✓ $computer acessível" -Level "SUCCESS"

 $script:SuccessCount++

 } else {

 throw "Computador não acessível"

 }

 }

 catch {

 Write-Log "✗ Erro ao processar $computer : $($_.Exception.Message)" -
Level "ERROR"

 Write-Verbose "StackTrace: $($_.ScriptStackTrace)"

 $script:FailureCount++

 }

 }

 }

}

end {

 # Finalização

 $script:EndTime = Get-Date

 $duration = $script:EndTime - $script:StartTime

 Write-Log "`n===== RESUMO DA EXECUÇÃO =====" -Level "INFO"

 Write-Log "Total processado: $script:TotalProcessed" -Level "INFO"

 Write-Log "Sucessos: $script:SuccessCount" -Level "SUCCESS"

 Write-Log "Falhas: $script:FailureCount" -Level $(if ($script:FailureCount -gt 0) {
"WARNING" } else { "INFO" })

 Write-Log "Duração: $($duration.ToString('hh\:mm\:ss'))" -Level "INFO"

 Write-Log "Log salvo em: $logFile" -Level "INFO"

 Stop-Transcript

 # Retornar código de saída apropriado

 if ($script:FailureCount -gt 0) {

 exit 1

 } else {

 exit 0

 }

}

Estrutura de Módulo

ModuleName/

│

├── ModuleName.psd1 # Manifesto do módulo

├── ModuleName.psm1 # Arquivo principal do módulo

│

├── Public/ # Funções públicas (exportadas)

│ ├── Get-Something.ps1

│ ├── Set-Something.ps1

│ └── New-Something.ps1

│

├── Private/ # Funções privadas (internas)

│ ├── Helper-Function.ps1

│ └── Internal-Process.ps1

│

├── Classes/ # Classes PowerShell

│ └── MyClass.ps1

│

├── Data/ # Arquivos de dados

│ └── config.json

│

├── Tests/ # Testes Pester

│ ├── ModuleName.Tests.ps1

│ └── Integration.Tests.ps1

│

├── Docs/ # Documentação

│ ├── README.md

│ └── Examples.md

│

└── LICENSE # Licença

Exemplo de Manifesto (ModuleName.psd1):

@{

 # Informações básicas

 RootModule = 'ModuleName.psm1'

 ModuleVersion = '1.0.0'

 GUID = 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'

 # Metadados

 Author = 'João Silva'

 CompanyName = 'Empresa Ltda'

 Copyright = '(c) 2025 Empresa Ltda. Todos os direitos reservados.'

 Description = 'Módulo para gerenciamento de recursos'

 # Requisitos

 PowerShellVersion = '5.1'

 RequiredModules = @('ActiveDirectory', 'SqlServer')

 # Funções exportadas

 FunctionsToExport = @(

 'Get-Something',

 'Set-Something',

 'New-Something'

)

 CmdletsToExport = @()

 VariablesToExport = @()

 AliasesToExport = @()

 # Links

 PrivateData = @{

 PSData = @{

 Tags = @('Management', 'Automation')

 LicenseUri = 'https://github.com/empresa/modulename/LICENSE'

 ProjectUri = 'https://github.com/empresa/modulename'

 IconUri = ''

 ReleaseNotes = 'Versão inicial do módulo'

 }

 }

}

Exemplo de Módulo Principal (ModuleName.psm1):

Carregar funções públicas

$publicFunctions = Get-ChildItem -Path "$PSScriptRoot\Public*.ps1" -ErrorAction
SilentlyContinue

foreach ($function in $publicFunctions) {

 try {

 . $function.FullName

 Write-Verbose "Função carregada: $($function.BaseName)"

 }

 catch {

 Write-Error "Erro ao carregar função $($function.BaseName): $_"

 }

}

Carregar funções privadas

$privateFunctions = Get-ChildItem -Path "$PSScriptRoot\Private*.ps1" -
ErrorAction SilentlyContinue

foreach ($function in $privateFunctions) {

 try {

 . $function.FullName

 }

 catch {

 Write-Error "Erro ao carregar função privada $($function.BaseName): $_"

 }

}

Exportar apenas funções públicas

Export-ModuleMember -Function $publicFunctions.BaseName

Mensagem de carregamento

Write-Verbose "Módulo ModuleName carregado com sucesso"

6.2.3 Comentários e Documentação

Comment-Based Help

function Get-UserReport {

 <#

 .SYNOPSIS

 Gera relatório de usuários do Active Directory

 .DESCRIPTION

 Esta função gera um relatório detalhado de usuários do Active Directory,

 incluindo informações como:

 - Nome completo

 - Email

 - Departamento

 - Último logon

 - Status da conta

 O relatório pode ser filtrado por OU, departamento ou grupo.

 .PARAMETER OrganizationalUnit

 Distinguished Name da Unidade Organizacional.

 Se não especificado, busca em todo o domínio.

 .PARAMETER Department

 Filtra usuários por departamento.

 Aceita wildcards (* e ?).

 .PARAMETER IncludeDisabled

 Inclui contas desabilitadas no relatório.

 Por padrão, apenas contas ativas são incluídas.

 .PARAMETER ExportPath

 Caminho para exportar o relatório em CSV.

 Se não especificado, retorna objetos no console.

 .EXAMPLE

 Get-UserReport

 Gera relatório de todos os usuários ativos do domínio.

 .EXAMPLE

 Get-UserReport -Department "TI" -IncludeDisabled

 Gera relatório de usuários do departamento TI, incluindo contas desabilitadas.

 .EXAMPLE

 Get-UserReport -OrganizationalUnit "OU=Users,DC=empresa,DC=com" -
ExportPath "C:\Reports\users.csv"

 Gera relatório de usuários da OU especificada e exporta para CSV.

 .EXAMPLE

 Get-UserReport -Department "TI" | Where-Object LastLogon -lt (Get-
Date).AddDays(-30)

 Busca usuários de TI que não fazem logon há mais de 30 dias.

 .INPUTS

 None

 Esta função não aceita entrada de pipeline.

 .OUTPUTS

 PSCustomObject

 Retorna objetos customizados com as seguintes propriedades:

 - Name: Nome completo

 - SamAccountName: Login

 - Email: Endereço de email

 - do último logon

 - Enabled: Status da conta

 - OU: Unidade Organizacional

 .NOTES

 Nome: Get-UserReport

 Autor: João Silva

 Versão: 1.0.0

 Data: 15/10/2025

 Requisitos:

 - Módulo ActiveDirectory

 - Permissões de leitura no AD

 Alterações:

 v1.0.0 (15/10/2025) - Versão inicial

 .LINK

 Get-ADUser

 .LINK

 https://docs.empresa.com/powershell/get-userreport

 #>

 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$false)]

 [string]$OrganizationalUnit,

 [Parameter(Mandatory=$false)]

 [string]$Department,

 [switch]$IncludeDisabled,

 [Parameter(Mandatory=$false)]

 [ValidateScript({Test-Path (Split-Path $_)})]

 [string]$ExportPath

)

 # Código da função...

}

Comentários Inline

function Process-Data {

 param($Data)

 # 脥� Bons comentários: Explicam o "porquê"

 # Normalizar dados antes do processamento para garantir consistência

 # Isso é necessário porque a fonte de dados pode ter formatos variados

 $normalizedData = $Data | ForEach-Object {

 $_.Trim().ToLower()

 }

 # Usar hash table para lookup O(1) ao invés de array O(n)

 # Melhora performance em grandes volumes de dados

 $lookup = @{}

 foreach ($item in $normalizedData) {

 $lookup[$item] = $true

 }

 #  Comentários ruins: Repetem o código

 # Incrementa contador

 $counter++

 # Loop foreach

 foreach ($item in $items) {

 # Processa item

 Process-Item $item

 }

 # 脥� Comentários de TODO, FIXME, HACK

 # TODO: Implementar cache para melhorar performance

 # FIXME: Este código falha quando $Data está vazio

 # HACK: Workaround temporário para bug #1234 - remover após fix upstream

 # 脥� Comentários de região (para código longo)

 #region Validação de Entrada

 if (-not $Data) {

 throw "Data não pode ser nulo"

 }

 #endregion

 #region Processamento Principal

 # ... código ...

 #endregion

 #region Limpeza e Finalização

 # ... código ...

 #endregion

}

6.2.4 Versionamento Semântico

Formato: MAJOR.MINOR.PATCH

Exemplo: 2.3.1

MAJOR: Mudanças incompatíveis na API

- Remoção de funções/parâmetros

- Mudança de comportamento que quebra código existente

- Exemplo: 1.5.2 -> 2.0.0

MINOR: Nova funcionalidade compatível

- Adição de novas funções

- Novos parâmetros opcionais

- Melhorias que não quebram código existente

- Exemplo: 1.5.2 -> 1.6.0

PATCH: Correções de bugs compatíveis

- Correção de bugs

- Melhorias de performance

- Atualizações de documentação

- Exemplo: 1.5.2 -> 1.5.3

Exemplo de controle de versão em módulo

@{

 ModuleVersion = '2.3.1'

 PrivateData = @{

 PSData = @{

 ReleaseNotes = @"

v2.3.1 (15/10/2025)

- [PATCH] Corrigido bug no Get-UserReport com OUs especiais

- [PATCH] Melhorada performance do Export em 20%

v2.3.0 (10/10/2025)

- [MINOR] Adicionado parâmetro -IncludeGroups ao Get-UserReport

- [MINOR] Nova função Get-UserPermissions

- [PATCH] Corrigidos avisos do PSScriptAnalyzer

v2.0.0 (01/09/2025)

- [MAJOR] BREAKING: Removido parâmetro -LegacyFormat

- [MAJOR] BREAKING: Get-UserReport agora retorna [PSCustomObject] ao invés
de [Hashtable]

- [MINOR] Adicionado suporte a pipeline

- [MINOR] Melhorado tratamento de erros

"@

 }

 }

}

6.2.5 Code Review Checklist

<#

CHECKLIST DE REVISÃO DE CÓDIGO

□ FUNCIONALIDADE

 □ O código faz o que deveria fazer?

 □ A lógica está correta?

 □ Todos os casos extremos estão cobertos?

 □ Há validação de entrada adequada?

□ LEGIBILIDADE

 □ O código é fácil de entender?

 □ Nomes de variáveis e funções são descritivos?

 □ Convenções de nomenclatura são seguidas?

 □ Há comentários onde necessário (não em excesso)?

□ SEGURANÇA

 □ Credenciais são gerenciadas de forma segura?

 □ Não há hardcoding de senhas ou segredos?

 □ Entrada do usuário é validada e sanitizada?

 □ Há tratamento adequado de erros?

 □ Logging não expõe informações sensíveis?

□ PERFORMANCE

 □ Algoritmos são eficientes?

 □ Não há loops desnecessários?

 □ Recursos são liberados adequadamente?

 □ Há uso apropriado de pipeline?

□ MANUTENIBILIDADE

 □ Código está bem estruturado?

 □ Funções têm responsabilidade única?

 □ Há duplicação de código?

 □ Dependências são claras?

□ TESTABILIDADE

 □ Código é testável?

 □ Há testes unitários?

 □ Casos de erro estão testados?

□ DOCUMENTAÇÃO

 □ Há comment-based help?

 □ Parâmetros estão documentados?

 □ Exemplos são fornecidos?

 □ README está atualizado?

□ PADRÕES

 □ Segue PowerShell Style Guide?

 □ PSScriptAnalyzer passa sem avisos?

 □ Código está formatado consistentemente?

 □ Verbos aprovados são usados?

□ COMPATIBILIDADE

 □ Versão mínima do PowerShell está especificada?

 □ Módulos requeridos estão listados?

 □ Funciona em diferentes SO (se aplicável)?

#>

Executar PSScriptAnalyzer

Invoke-ScriptAnalyzer -Path ".\MeuScript.ps1" -Severity Warning, Error

Executar testes Pester

Invoke-Pester -Path ".\Tests" -Output Detailed

Verificar formatação

Use extensão PowerShell do VS Code com formatação automática

6.2.6 README Template

Nome do Projeto

Breve descrição do projeto em uma ou duas frases.

Badges

Índice

 Sobre

 Requisitos

 Instalação

 Uso

 Exemplos

 Documentação

 Contribuindo

 Licença

 Autores

Sobre

Descrição detalhada do projeto:

 O que ele faz

 Por que foi criado

 Principais funcionalidades

Requisitos

 PowerShell 5.1 ou superior

 Windows 10/Windows Server 2016 ou superior

 Módulos necessários:

o ActiveDirectory

o SqlServer

Instalação

Instalação Manual

Clone o repositório

git clone https://github.com/usuario/projeto.git

Navegue até o diretório

cd projeto

Importe o módulo

Import-Module .\ModuleName.psd1

Instalação via PowerShell Gallery

Install-Module -Name ModuleName

Uso

Básico

Exemplo de uso básico

Get-Something -Name "Valor"

Avançado

Exemplo de uso avançado

Get-Something -Name "Valor" -Filter { $_.Property -eq "Filtro" } |

 Set-Something -NewValue "NovoValor"

Exemplos

Exemplo 1: Cenário Comum

Descrição do que este exemplo faz

Get-Something -Parameter1 "Valor1" -Parameter2 "Valor2"

Saída esperada:

Nome Valor Status

---- ----- ------

Item1 100 Ativo

Exemplo 2: Processamento em Lote

Processar múltiplos itens

Get-Content .\lista.txt | ForEach-Object {

 Get-Something -Name $_

}

Documentação

Documentação completa disponível em:

 Wiki do Projeto

 Documentação de API

Funções Principais

 Get-Something - Obtém recursos

 Set-Something - Configura recursos

 New-Something - Cria novos recursos

 Remove-Something - Remove recursos

Contribuindo

Contribuições são bem-vindas! Por favor:

1. Fork o projeto

2. Crie uma branch para sua feature (git checkout -b
feature/NovaFuncionalidade)

3. Commit suas mudanças (git commit -m 'Adiciona nova funcionalidade')

4. Push para a branch (git push origin feature/NovaFuncionalidade)

5. Abra um Pull Request

Guidelines

 Siga o PowerShell Style Guide

 Adicione testes para novas funcionalidades

 Atualize a documentação

 Execute PSScriptAnalyzer antes de submeter

Licença

Este projeto está licenciado sob a Licença MIT - veja o arquivo LICENSE para
detalhes.

Autores

 João Silva - Trabalho Inicial - GitHub

Agradecimentos

 Agradecimento especial aos contribuidores

 Inspiração: Projeto X

Changelog

Veja CHANGELOG.md para histórico de versões.

Suporte

Para problemas, dúvidas ou sugestões:

 Abra uma Issue

 Email: suporte@empresa.com

 Slack: #powershell-help

Conclusão da Seção 6

Nesta seção, exploramos as melhores práticas e aspectos de segurança
essenciais para desenvolvimento profissional em PowerShell:

1. Gestão de Credenciais:

o Métodos seguros de armazenamento

o Export-Clixml, SecureString, Credential Manager

o Azure Key Vault para ambientes enterprise

2. Segurança em Scripts:

o Validação e sanitização de entrada

o Execution Policy e assinatura digital

o Logging e auditoria

o PowerShell Remoting seguro

o Just Enough Administration (JEA)

3. Padronização:

o Convenções de nomenclatura

o Estrutura de scripts e módulos

o Versionamento semântico

4. Documentação:

o Comment-based help completo

o Comentários inline efetivos

o README profissional

o Code review checklist

Com essas práticas, você pode criar scripts PowerShell seguros, profissionais,
manuteníveis e bem documentados que atendam aos mais altos padrões da
indústria.

